Russian Journal of Genetics

, Volume 38, Issue 8, pp 851–868 | Cite as

Molecular DNA Markers in Phylogeny and Systematics

  • V. V. Grechko
Article

Abstract

The review considers data on the use of the main evolutionary markers (ribosomal, mitochondrial, and RAPD markers; dispersed and tandem repeats). Some circumstances impending analysis of these data are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Mayr, E., Animal Species and Evolution, Cambridge: Belknap, 1963.Google Scholar
  2. 2.
    Schmid, C.W., Does SINE Evolution Preclude Alu Function?, Nucleic Acids Res., 1998, vol. 26, pp. 4541-4550.Google Scholar
  3. 3.
    Ryskov, A.P., Multilocus DNA Fingerprinting in Population Genetic Studies of Biodiversity, Mol. Biol. (Moscow), 1999, vol. 33, no. 6, pp. 997-1011.Google Scholar
  4. 4.
    Sverdlov, E.D., The Microcosm of the Genome, Mol. Biol. (Moscow), 1999, vol. 33, no. 6, pp. 917-940.Google Scholar
  5. 5.
    Kupriyanova, N.S., Conservation and Variation of Eukaryotic Ribosomal DNA, Mol. Biol. (Moscow), 2000, vol. 34, no. 5, pp. 753-767.Google Scholar
  6. 6.
    Antonov, A.S., Osnovy genosistematiki rastenii (Basics of Plant Genosystematics), Moscow: MAIK “Nauka/Interperiodica,” 2000.Google Scholar
  7. 7.
    Debabov, V.G., Bacterial Life Outside Laboratories, Mol. Biol. (Moscow), 1999, vol. 33, no. 6, pp. 1074-1084.Google Scholar
  8. 8.
    Pesenko, Yu.A., Methodical Analysis of the Taxonomy: I. Formulation of the Problem, Major Taxonomic Schools, Printsipy i metody zoologicheskoi sistematiki (Principles and Methods of Zoological Systematics), Borkin, L.Ya., Ed., Akad. Nauk SSSR, 1989, vol. 206, pp. 8-119.Google Scholar
  9. 9.
    Emel'yanov, A.F. and Rasnitsin, A.P., Systematics, Phylogeny, Cladistics, Priroda, 1991, no. 7, pp. 26-37.Google Scholar
  10. 10.
    Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Ideas in Biology), Moscow: Progress-Traditsiya, 1999.Google Scholar
  11. 11.
    Molecular Systematics, Hillis, D.M., Moritz, C., and Mable, B.K., Eds., Sunderland, Mass.: Sinauer, 1996.Google Scholar
  12. 12.
    Hillis, D.M., Molecular versus Morphological Approach to Systematics, Annu. Rev. Ecol. Syst., 1987, vol. 18, pp. 23-42.Google Scholar
  13. 13.
    Huelsenbeck, J.P. and Nielsen, R., Variation in the Pattern of Nucleotide Substitution across Sites, J. Mol. Evol., 1999, vol. 48, pp. 86-93.Google Scholar
  14. 14.
    Purvis, A. and Quicke, D.L.J., Building Phylogenies: Are the Big Easy?, Trends Ecol. Evol., 1997, vol. 12, pp. 49-50.Google Scholar
  15. 15.
    DeJong, W.W., Molecular Remodel the Mammalian Tree, Trends Ecol. Evol., 1998, vol. 13, pp. 203-207.Google Scholar
  16. 16.
    Forterre, P. and Phillipe, H., Where Is the Root for the Universal Tree of Life, BioEssays, 1999, vol. 21, pp. 871-879.Google Scholar
  17. 17.
    Adoutte, A., Balavoine, G., Lartillot, N., and de Rosa, R., The End of Intermedia Taxa?, Anim. Evol., 1999, vol. 15, pp. 104-108.Google Scholar
  18. 18.
    Philippe, H. and Laurent, J., How Good Are Phylogenetic Trees? Curr. Opin. Genet. Dev., 1998, vol. 8, pp. 616-623.Google Scholar
  19. 19.
    Ayala, F.J., Vagaries of the Molecular Clock, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7776-7783.Google Scholar
  20. 20.
    Wolfe, K.H. and Shields, D.C., Molecular Evidence for an Ancient Duplication of the Entire Yeast Genome, Nature, 1997, vol. 387, pp. 708-713.Google Scholar
  21. 21.
    Kordis, D. and Gubensek, F., Unusual Horizontal Transfer of a Long Interspersed Nuclear Element between Distant Vertebrate Classes, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 10 704-10 709.Google Scholar
  22. 22.
    Avise, J.C., Molecular Markers, Natural History, and Evolution, New York: Chapman & Hall, 1994.Google Scholar
  23. 23.
    Gerbi, S.A., Evolution of Ribosomal DNA, Molecular Evolution and Genetics, MacIntyre, R.J., Ed., New York: Plenum, 1985, pp. 419-517.Google Scholar
  24. 24.
    Aleshin, V.V., Vladycheskaya, N.S., Kedrova, O.S., et al., Comparison of the 18S rRNA Genes in the Invertebrate Phylogeny, Mol. Biol. (Moscow), 1995, vol. 29, no. 6, pp. 1408-1426.Google Scholar
  25. 25.
    Pennisi, E., Genome Data Shake Tree of Life, Science, 1998, vol. 280, pp. 672-674.Google Scholar
  26. 26.
    Wainwright, P.O., Hinkle, G., Sogin, M.L., and Stickel, S.K., Monophyletic Origins of the Metazoa: An Evolutionary Link with Fungi, Science, 1993, vol. 260, pp. 340-342.Google Scholar
  27. 27.
    Aquinaldo, A.M., Turbeville, J.M., Linford, L.S., et al., Evidence for a Clade of Nematodes, Arthropods and Other Molting Animals, Nature, 1997, vol. 387, pp. 489-493.Google Scholar
  28. 28.
    Tetushkin, E.Ya., Molecular Paleogenetics of Primates, Genetika (Moscow), 1997, vol. 33, no. 3, pp. 293-307.Google Scholar
  29. 29.
    Pawlowski, J., Bolinar, I., Fahrni, J.F., et al., Extreme Differences in Rates of Molecular Evolution of Foraminifera Revealed by Comparison of Ribosomal DNA Sequences and the Fossil Record, Mol. Biol. Evol. 1997, vol. 14, pp. 498-505.Google Scholar
  30. 30.
    Bruno, W.J., Socci, N.D., and Halpern, A.L., Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction, Mol. Biol. Evol. 2000, vol. 17, pp. 189-197.Google Scholar
  31. 31.
    Hwang, U.W., Kim, W., Tautz, D., and Friedrich, M., Molecular Phylogenetics at the Felsenstein Zone: Approaching the Strepsiptera Problem Using 5.8S and 28S rDNA Sequences, Mol. Phyl. Evol., 1998, vol. 9, pp. 470-480.Google Scholar
  32. 32.
    Yang, Z., How Often Do Wrong Models Produce Better Phylogenies? Mol. Biol. Evol., 1997, vol. 144, pp. 105-108.Google Scholar
  33. 33.
    Stiller, J.W. and Hall, B.D., Long-Branch Attraction and the rDNA Model of Early Eukaryotic Evolution, Mol. Biol. Evol., 1999, vol. 16, pp. 1270-1279.Google Scholar
  34. 34.
    Khesin, R.B., Nepostoyanstvo genoma (Genome Instability), Moscow: Nauka, 1984.Google Scholar
  35. 35.
    Kurland, C.G., Something for Everyone: Horizontal Gene Transfer in Evolution, EMBO Rep., 2000, vol. 1, pp. 92-95.Google Scholar
  36. 36.
    Xu', S., Phylogenetic Analysis under Reticulate Evolution, Mol. Biol. Evol., 2000, vol. 17, pp. 897-907.Google Scholar
  37. 37.
    Andronico, F., De Lucchini, S., Graziani, F., et al., Molecular Organization of Ribosomal RNA Genes Clusters at Variable Chromosomal Sites in Triturus vulgaris meridionalis (Amphibia, Urodela), J. Mol. Biol., 1985, vol. 186, pp. 219-229.Google Scholar
  38. 38.
    Wellems, T.E., Walliker, D., Smith, C.L., et al., Histidine-Rich Protein Gene Marks a Linkage Group Favored Strongly in a Genetic Cross of Plasmodium viviparum, Cell (Cambridge, Mass.), 1987, vol. 49, pp. 633-642.Google Scholar
  39. 39.
    Cumming, M.P., Otto, S.P., and Wakeley, J., Sampling Properties of DNA Sequence Data in Phylogenetic Studies, Mol. Biol. Evol., 1995, vol. 12, pp. 814-822.Google Scholar
  40. 40.
    Wallis, G.P., Do Animal Mitochondrial Genomes Recombine?, Trends Ecol. Evol., 1999, vol. 14, pp. 209-210.Google Scholar
  41. 41.
    Sheldon, F.E., Jones, C.E., and McCracken, K.G., Relative Pattern and Rates of Evolution in Heron Nuclear and Mitochondrial DNA, Mol. Biol. Evol., 2000, vol. 17, pp. 437-450.Google Scholar
  42. 42.
    Arnason, U., Gullberg, A., Gretarsdottir, S., et al., The Mitochondrial Genome of the Sperm Whale and a New Molecular Reference for Estimating Eutherian Divergence Dates, J. Mol. Evol., 2000, vol. 50, pp. 569-578.Google Scholar
  43. 43.
    Avise, J.C. and Walker, D., Species Realities and Numbers in Sexual Vertebrates: Perspectives from Asexually Transmitted Genome, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 992-995.Google Scholar
  44. 44.
    Hedges, S.B., Molecular Evidence for the Origin of Birds, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 2621-2624.Google Scholar
  45. 45.
    Heise, P.J., Maxson, L.R., Dowling, H.G., and Hedges, S.B., Higher-Level Snake Phylogeny Inferred from mtDNA Sequences of 12S rRNA and 16S rRNA Genes, Mol. Biol. Evol., 1995, vol. 12, pp. 259-265.Google Scholar
  46. 46.
    Boor, J.L. and Brown, W.M., Mitochondrial Genomes of Galathealinum, Helobdella and Platynereis: Sequences and Gene Arrangement Comparisons Indicate That Pogonophora Is Not a Phylum and Annelida and Arthropoda Are Not Sister Taxa, Mol. Biol. Evol., 2000, vol. 17, pp. 87-106.Google Scholar
  47. 47.
    Macey, J.R., Larson, A., Ananjeva, N.B., and Papenfus, T.J., Evolutionary Shifts in Three Major Structural Features of the Mitochondrial Genome among Iguanian Lizards, J. Mol. Evol., 1997, vol. 44, pp. 660-674.Google Scholar
  48. 48.
    Le, T.H., Blair, D., Agatsuma, T., et al., Phylogenies Inferred from Mitochondrial Gene Orders: A Cautionary Tale from the Parasitic Flatworms, Mol. Biol. Evol., 2000, vol. 17, pp. 1123-1125.Google Scholar
  49. 49.
    Hickerson, M.J. and Canningham, C.W., Dramatic Mitochondrial Gene Rearrangement in the Hermit Crab Pagurus longicarpus (Crustacea, Anomura), Mol. Biol. Evol., 2000, vol. 17, pp. 634-644.Google Scholar
  50. 50.
    Moritz, C., Dowling, T.E., and Brown, W.M., Evolution of Animal mtDNA: Relevance for Population Biology and Systematics, Annu. Rev. Ecol. Syst., 1987, vol. 18, pp. 269-292.Google Scholar
  51. 51.
    Kumasawa, Y. and Nishida, M., Complete Mitochondrial DNA Sequence of the Green Turtle and Blue-Tailed Mole Skink: Statistical Evidence for Archosaurian Affinity of Turtles, Mol. Biol. Evol., 1999, vol. 16, pp. 784-792.Google Scholar
  52. 52.
    D'Erchia, A., Gissi, G., Persole, G., et al., The Guinea Pig Is Not a Rodent, Nature, 1996, vol. 381, pp. 597-600.Google Scholar
  53. 53.
    Slobodyanyuk, S.Ya., Kirilchik, S.V., Pavlova, M.E., et al., The Evolutionary Relationships of Two Families of Cottoid Fishes of Lake Baikal (East Siberia) as Suggested by Analysis of Mitochondrial DNA, J. Mol. Evol., 1995, vol. 40, pp. 392-399.Google Scholar
  54. 54.
    Fu, J., Toward the Phylogeny of the Family Lacertidae: Implication from Mitochondrial DNA 12S and 16S Gene Sequences (Reptilia: Squamata), Mol. Phylogenet. Evol., 1998, vol. 9, pp. 118-130.Google Scholar
  55. 55.
    Buntjer, J.B. and Lenstra, J.A., Phylogeny within Families Deduced from Interspersed Repeat PCR Finger-prints, in DNA Repeats in Vertebrate Genome as Probes in Phylogeny and Species Identification, Utrecht: Univ. of Utrecht, 1997, pp. 25-38.Google Scholar
  56. 56.
    Eyre-Walker, A., Evolutionary Genomics, Trends Ecol. Evol., 1999, vol. 14, p. 176.Google Scholar
  57. 57.
    Rand, D., Mitochondrial Genomics Flies High, Trends Ecol. Evol., 2001, vol. 16, pp. 2-4.Google Scholar
  58. 58.
    Sorhannus, U. and Fox, M., Synonymous and Nonsynonymous Substitution Rates in Diatoms: A Comparison between Chloroplast and Nuclear Genes, J. Mol. Evol., 1999, vol. 48, pp. 209-212.Google Scholar
  59. 59.
    Nunn, G.B. and Stanley, S.E., Body Size Effects and Rates of Cytochrome B Evolution in Tube-Nosed Seabirds, Mol. Biol. Evol., 1998, vol. 15, pp. 1360-1371.Google Scholar
  60. 60.
    Hurai, S., Hayasaka, K., Kondo, R., et al., Recent African Origin of Modern Humans Revealed by Complete Sequences of Hominid mtDNA, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 532-536.Google Scholar
  61. 61.
    Gissi, C., Reyes, A., Pesole, G., and Saccone, C., Linkage-Specific Evolutionary Rate in Mammalian mtDNA, Mol. Biol. Evol., 2000, vol. 17, pp. 1022-1031.Google Scholar
  62. 62.
    Mundy, N.I., Pissinatti, A., and Woodruff, D.S., Multiple Nuclear Insertion of Mitochondrial Cytochrome B Sequence in Callitrichine Primates, Mol. Biol. Evol., 2000, vol. 17, pp. 1075-1080.Google Scholar
  63. 63.
    Garsia-Machado, E., Pempera, M., Donnebony, N., et al., Mitochondrial Genes Collectively Suggest the Paraphyly of Crustacea with Respect to Insecta, J. Mol. Evol., 1999, vol. 49, pp. 142-149.Google Scholar
  64. 64.
    Grechko, V.V., Ryabinin, D.M., Fedorova, L.V., et al., Molecular Genetic Classification and Phylogenetic Relationships of Several Lizard Species of the Family Lacertidae as Evident from the Analysis of Specific Restriction Site Distribution in DNA Repeats (Taxono-printing), Mol. Biol. (Moscow), 1998, vol. 32, no. 1, pp. 172-183.Google Scholar
  65. 65.
    Schierwater, B., Arbitrarily Amplified DNA in Systematics and Phylogenetics, Electrophoresis (Weinheim, Fed. Repub. Ger.), 1995, vol. 16, pp. 1643-1647.Google Scholar
  66. 66.
    Espinasa, L. and Borowsky, R., Evolutionary Divergence of AP-PCR (RAPD) Patterns, Mol. Biol. Evol., 1998, vol. 15, pp. 408-414.Google Scholar
  67. 67.
    Ryabinina, N.L., Grechko, V.V., and Darevsky, I.S., DNA Polymorphism in Lizard Populations of the Family Lacertidae, as Revealed by RAPD Analysis, Genetika (Moscow), 1998, vol. 34, no. 12, pp. 1661-1667.Google Scholar
  68. 68.
    Grechko, V.V., Fedorova, L.V., Fedorov, A.N., et al., Restriction Mapping of Highly Repetitive DNA Sequences in Studies of the Genetic Relationships in Lower Animal Taxa, Mol. Biol. (Moscow), 1997, vol. 31, no. 2, pp. 256-264.Google Scholar
  69. 69.
    Rabouam, C., Comes, A.M., Bretagnolle, V., et al., Futures of DNA Fragments Obtained by Random Amplified Polymorphic DNA (RAPD) Assays, Mol. Ecol., 1999, vol. 8, pp. 493-503.Google Scholar
  70. 70.
    Fukatsu, T. and Ishikawa, H., Differentiation of Aphid Clones by Arbitrary Primed Polymerase Chain Reaction (AP-PAR) DNA Fingerprinting, J. Mol. Evol. 1994, vol. 3, pp. 187-192.Google Scholar
  71. 71.
    Ellegren, H. and Sheldon, B., New Tools for Sex Identification and the Study of Sex Allocation in Birds, Trends Ecol. Evol., 1997, vol. 12, pp. 255-259.Google Scholar
  72. 72.
    Chobanu, D.G., Rudykh, I.A., Ryabinina, N.L., et al., Reticulate Evolution of Parthenogenetic Rock Lizard Species of the Family Lacertidae: Inheritance of CLSat Tandem Repeats and Anonymous RAPD Markers, Mol. Biol. (Moscow), 2002, vol. 36, no. 2, pp. 296-306.Google Scholar
  73. 73.
    Khrisanfova, G.G., Semenova, S.K., and Ryskov, A.P., Cloning and Characterization of RAPD Genome Markers in Parasitic Nematodes Trichinella spiralis and T. pseudospiralis, Mol. Biol. (Moscow), 2000, vol. 34, no. 5, pp. 828-833.Google Scholar
  74. 74.
    Gilbert, M. and Labuda, D., CORE-SINEs: Eukaryotic Short Interspersed Retroposing Elements with Common Sequence Motifs, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 2869-2874.Google Scholar
  75. 75.
    Singer, M.F., SINEs and LINEs: Highly Repeated Short and Long Interspersed Sequences in Mammalian Genomes, Cell (Cambridge, Mass.), 1982, vol. 28, pp. 433-434.Google Scholar
  76. 76.
    Doolittle, W.F. and Sapienza, C., Selfish Genes, the Phenotype Paradigm and Genome Evolution, Nature, 1980, vol. 284, pp. 601-603.Google Scholar
  77. 77.
    Orgel, L.E. and Crick, F.H.C., Selfish DNA: The Ultimate Parasite, Nature, 1981, vol. 284, pp. 604-607.Google Scholar
  78. 78.
    Kramerov, D.A., Major Repetitive Elements of the Mouse Genome, Doctoral (Biol.) Dissertation, Moscow, 1987.Google Scholar
  79. 79.
    Hillis, D.M., SINE of the Perfect Character, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 9979-9981.Google Scholar
  80. 80.
    Hughes, D.S., MIRs as of Mammalian Gene Evolution, Trends Genet., 2000, vol. 16, pp. 60-62.Google Scholar
  81. 81.
    Serdobova, I.M. and Kramerov, D.A., Short Retroposons of the B2 Superfamily: Evolution and Application for the Study of Rodent Phylogeny, J. Mol. Evol., 1998, vol. 46, pp. 202-214.Google Scholar
  82. 82.
    Kass, D.H., Raynas, M.E., and Williams, T.M., Evolutionary History of B1 Retroposons in the Genus Mus, J. Mol. Evol., 2000, vol. 51, pp. 256-264.Google Scholar
  83. 83.
    Sietkiewicz, E., Richter, C., and Labuda, D., Phylogenetic Affinities of Tarsier in the Context of Primate Alu Repeats, Mol. Phyl. Evol. 1998, vol. 11, pp. 77-83.Google Scholar
  84. 84.
    Blinov, V.M., Denisov, S.I., Saraev, D.V., et al., Structural Organization of the Human Genome: Distributions of Nucleotides, Alu Repeats, and Exons in Chromosomes 21 and 22, Mol. Biol. (Moscow), 2001, vol. 35, no. 6, pp. 1032-1038.Google Scholar
  85. 85.
    Armour, J.A.L., Monckton, D.G., Neil, D.L., et al., Mechanisms of Mutation at Human Minisatellite Loci, Genome Analysis, vol. 7: Genome Arrangement and Stability, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1993, pp. 43-57.Google Scholar
  86. 86.
    Moyzis, R.K., Buckingham, J.M., Cram, L.S., et al., A Highly Conserved DNA Sequence Presented at the Telomeres of Human Chromosomes, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 6622-6626.Google Scholar
  87. 87.
    Grady, D.L., Rateiff, R.L., Robinson, D.L., et al., Highly Conserved Repetitive DNA Sequences Are Present at Human Centromeres, Proc. Natl. Acad. Sci. USA 1992, vol. 89, pp. 1695-1696.Google Scholar
  88. 88.
    Miclos, G.L.G., Localized Highly Repetitive DNA Sequences in Vertebrate and Invertebrate Genome, Molecular Evolutionary Genetics, McIntyre, R.J., Ed., New York: Plenum, 1985, pp. 241-321.Google Scholar
  89. 89.
    Beridze, T.G., Satellitnye DNK (Satellite DNA), Moscow: Nauka, 1982.Google Scholar
  90. 90.
    Elder, J.F. and Turner, B.J., Concerted Evolution of the Population Level: Pupfish HindIII Satellite DNA Sequences, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 994-998.Google Scholar
  91. 91.
    Varley, J.M., Macgregor, H.C., and Barnett, L., Characterization of a Short Highly Repeated and Centromerically Localized DNA Sequences in the Crested and Marbled Newts of the Genus Triturus, Chromosoma 1990, vol. 100, pp. 15-31.Google Scholar
  92. 92.
    Lorite, P., Palomeque, T., Garneria, I., and Petitpierre, E., Characterization and Chromosome Location of Satellite DNA in the Leaf Beetle Chrysolina americana (Coleoptera, Chrysomelidae), Genetica (The Hague), 2001, vol. 110, pp. 143-150.Google Scholar
  93. 93.
    Castagnone-Sereno, P., Leroy, H., Semblat, J.-P., et al., Unusual and Strongly Structured Sequence Variation in a Complex Satellite DNA Family from the Nematode Meliodogine chitwoodi, J. Mol. Biol., 1998, vol. 46, pp. 225-233.Google Scholar
  94. 94.
    Mednikov, B.M., Bannikova, A.A., Lomov, A.A., et al., Restriction Enzyme Analysis of Nuclear Repetitive DNA, the Criteria of Species, and the Mechanism of Speciation, Mol. Biol. (Moscow), 1995, vol. 29, pp. 1308-1319.Google Scholar
  95. 95.
    Garrido-Ramos, M.A., de Herran, R., Jamilena, M., et al., Evolution of Centromeric Satellite DNA and Its Use in Phylogenetic Studies of the Sparide Family (Pisces, Perciformes), Mol. Phyl. Evol., 1999, vol. 12, pp. 200-204.Google Scholar
  96. 96.
    Goodier, J.L. and Davidson, W.S., Characterization of Novel Minisatellite Repeat Loci in Atlantic Salmon (Salmo salar) and Their Phylogenetic Distribution, J. Mol. Evol., 1998, vol. 46, pp. 245-255.Google Scholar
  97. 97.
    Vignali, R., Rijili, F.M., Batistoni, R., et al., The Dispersed Highly Repeated DNA Families of Truturus vulgaris meridionales (Amphibia, Urodela) Are Widely Conserved among Salamandridae, Chromosoma 1991, vol. 100, pp. 87-96.Google Scholar
  98. 98.
    Olmo, E., Odierna, G., and Capriglione, T., The Karyology of Mediterranean Lacertidae Lizards, Lacertid of the Mediterranean Region, Valakas, E.D., Bohme, W., Rerer-Mellado, V., and Maragou, P., Eds., Athens: Alicante, 1993, pp. 61-84.Google Scholar
  99. 99.
    Kozlova, S.V., Elisafenko, E.A., Mazurok, N.A., and Zakiyan, S.M., Genome Organization and Chromosomal Localization of New Repeat MS7 Specific to Sex-Chromosomal Heterochromatin in Vole of the arvalis Group of the Genus Microtus, Mol. Biol. (Moscow), 2001, vol. 35, no. 5, pp. 792-797.Google Scholar
  100. 100.
    Potapov, S.G., Diagnostic Potentialities of Molecular Genetic Markers in Mammalian Systematics, Cand. Sci. (Biol.) Dissertation Moscow, 1998.Google Scholar
  101. 101.
    Shevchenko, A.N., Slobodyanyuk, S.Ya., and Zakiyan, S.M., Analysis of the Variation of Repetitive DNA Sequences in Four Common Vole Species, Mol. Biol. (Moscow), 1999, vol. 33, no. 4, pp. 700-705.Google Scholar
  102. 102.
    Modi, W.S., Gallagher, D.S., and Womack, J.E., Evolutionary Histories of Highly Repeated DNA Families among the Artiodactyla (Mammalia), J. Mol. Evol. 1996, vol. 42, pp. 337-349.Google Scholar
  103. 103.
    Blake, R.D., Wang, J.Z., and Bauregard, L., Repetitive Sequence Families in Alces alces americana, J. Mol. Evol., 1997, vol. 44, pp. 509-520.Google Scholar
  104. 104.
    Milinkovitch, M.C., Molecular Phylogeny of Cetaceans Prompts Revision of Morphological Transformation, Trends Ecol. Evol., 1995, vol. 10, pp. 328-334.Google Scholar
  105. 105.
    Seymour, J., DNA Tells of Species Links by Repeating Itself, Ecos, 1982, no. 30, pp. 21-23.Google Scholar
  106. 106.
    Mullenbach, R., Lutz, S., Holzmann, K., et al., A Non-Alphoid Repetitive DNA Sequence from Human Chromosome 21, Hum. Genet., 1992, vol. 89, pp. 519-523.Google Scholar
  107. 107.
    Alves, G., Seuanez, H.M., and Fanning, T., A Clade of a New World Primates with Distinctive Alphoid Satellite DNAs, Mol. Phyl. Evol., 1997, vol. 9, pp. 220-224.Google Scholar
  108. 108.
    Trifonov, E.N., Tuning Function of Tandem Repeating Sequences: A Molecular Device for Fast Adaptation, Proc. Int. Conf. Evol. Genomics, Costa Rica, 1999, p. 74.Google Scholar
  109. 109.
    Dimitri, P. and Junakovic, N., Revising the Selfish DNA Hypothesis: New Evidence on Accumulation of Transposable Elements in Heterochromatin, Trends. Genet. 1999, vol. 15, pp. 123-124.Google Scholar
  110. 110.
    Martinez-Balbas, A., Rodriguez-Campos, A., Garcia-Ramirez, M., et al., Satellite DNA Contain Sequences That Induce Curvature, Biochemistry, 1990, vol. 29, pp. 2342-2348.Google Scholar
  111. 111.
    Constanzo, G., De Muiro, E., Salina, G., and Negri, R., Attraction Phasing and Neighbor Effects of Histone Octamer on Curved DNA, J. Mol. Biol., 1990, vol. 216, pp. 363-374.Google Scholar
  112. 112.
    Romanova, L.Y., Deriagin, G.V., and Mashkova, T.D., Evidence for Selection in Evolution of α-Satellite DNA: The Central Role of CENP-B/pJ Binding Region, J. Mol. Biol., 1996, vol. 261, pp. 334-340.Google Scholar
  113. 113.
    Warburton, P.E., Waye, J.S., and Willard, H.F., Nonrandom Localization of Recombination Events in Human α-Satellite Repeat Unit Variants: Implications for Higher Orders Structural Characteristics within Centromeric Heterochromatin, Mol. Cell. Biol. 1993, vol. 13, pp. 6520-6529.Google Scholar
  114. 114.
    Larin, Z., Fricker, M.D., and Tyler-Smith, C., De Novo Formation of Several Features of a Centromere Following Induction of a Y Alphoid YAC into Mammalian Cells, Hum. Mol. Genet., 1994, vol. 3, pp. 689-695.Google Scholar
  115. 115.
    Capriglione, T., DeSanto, M.G., Odierna, G., and Olmo, E., An Alphoid-like Satellite DNA Sequence Is Present in the Genome of a Lacertid Lizards, J. Mol. Evol., 1998, vol. 46, pp. 240-244.Google Scholar
  116. 116.
    Slamovits, L.H., Cook, J.A., Lessa, E.P., and Rossi, M.S., Recurrent Amplifications and Deletions of Satellite DNA Accompanied Chromosomal Diversification in South American Tuco-Tucos (Genus Ctenomys, Rodentia: Octodontidae): A Phylogenetic Approach, Mol. Biol. Evol., 2001, vol. 18, pp. 1708-1719.Google Scholar
  117. 117.
    Saitoh, Y., Miyamoto, N., Okada, T., et al., The RS447 Human Megasatellite Tandem Repetitive Sequence Encodes a Novel Deubiquitinating Enzyme with Functional Promoter, Genomics 2000, vol. 67, pp. 291-300.Google Scholar
  118. 118.
    Plohl, M., Mistrovic, N., Bruvo, B., and Ugarkovic, D., Similarity of Structural Features and Evolution of Satellite DNAs from Palorus subdepressus (Coleoptera) and Related Species, J. Mol. Evol., 1998, vol. 46, pp. 234-239.Google Scholar
  119. 119.
    Kipling, D. and Warburton, P.E., Centromeres, CENP-B and Tigger Too, Trends Genet. 1997, vol. 13, pp. 141-145.Google Scholar
  120. 120.
    Fedorov, A.N., Fedorova, L.V., Grechko, V.V., et al., Variable and Invariable DNA Repeats Characters Revealed by Taxonoprint Approach Are Useful for Molecular Systematics, J. Mol. Evol., 1999, vol. 48, pp. 69-76.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • V. V. Grechko
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations