, Volume 474, Issue 1–3, pp 91–105 | Cite as

Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration

  • José R. RomeroEmail author
  • Iphigenia Kagalou
  • Jörg Imberger
  • Dimitra Hela
  • Melina Kotti
  • Aristides Bartzokas
  • Triantafyllos Albanis
  • Nicholaos Evmirides
  • Spiros Karkabounas
  • Joannis Papagiannis
  • Amalia Bithava


Lake Pamvotis is a moderately sized (22 km2) shallow (zavg=4 m) lake with a polymictic stratification regime located in northwest Greece. The lake has undergone cultural eutrophication over the past 40 years and is currently eutrophic (annual averages of FRP=0.07 mg P l-1, TP=0.11 mg P l-1, NH4+=0.25 mg N l-1, NO3=0.56 mg N l-1). FRP and NH4+ levels are correlated to external loading from streams during the winter and spring, and to internal loading during multi-day periods of summer stratification. Algal blooms occurred in summer (July–August green algae, August–September blue-green algae), autumn (October blue-green algae and diatoms), and winter (February diatoms), but not in the spring (March–June). The phytoplankton underwent brief periods of N- and P-limitation, though persistent low transparency (secchi depth of 60–80 cm) also suggests periods of light limitation. Rotifers counts were highest from mid-summer to early autumn whereas copepods were high in the spring and cladocerans were low in the summer. Removal of industrial and sewage point sources a decade ago resulted in a decrease in FRP. A phosphorus mass balance identified further reductions in external loading from the predominately agricultural catchment will decrease FRP levels further. The commercial fishery and lake hatchery also provides opportunities to control algal biomass through biomanipulation measures.

shallow lakes water quality eutrophication restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA, 1980. Standard Methods for the Examination Water and Wastewater. 16th edn.Google Scholar
  2. Alden R. W., R. C. Dahiga & R. J. Young, 1982. A method for the enumeration of zooplankton samples. J. Exp. March Biol. Ecol. 59: 185.Google Scholar
  3. Annadotter, H., G. Cronberg, R. Aagren, B. Lundstedt, P. A. Nilsson & S. Strobeck. 1999. Multiple techniques for lake restoration. Hydrobiologia 396: 77-85.Google Scholar
  4. Bartzokas, A. & D. A. Metaxas. 1995. Factor analysis of some climatological elements in Athens, 1931-1992: covariability and climatic change. Theoret. Appl. Climatol. 52: 195-205.Google Scholar
  5. Bengtsson, L., 1975. Phosphorus release from a highly eutrophic lake sediment. Verh. Int. Ver. Limnol. 19: 1107-1116.Google Scholar
  6. Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnol. Oceanogr. 38: 1179-1192.Google Scholar
  7. Claesson, A. & S. O. Ryding, 1977. Nitrogen-a growth limiting nutrient in eutrophic lakes. Prog. Wat. Tech. 8: 291-299.Google Scholar
  8. Dillon, P. J. & R. H. Rigler, 1974. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. J. Fish. Res. Bd Can. 31: 1771-1778.Google Scholar
  9. Edmondson, W. T., 1970. Phosphorus, nitrogen, and algae in Lake Washing after diversion of sewage. Science 169: 690-691.Google Scholar
  10. Ekholm, P., O. Malve & T. Kirkkala, 1997. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhajarvi (southwest Finland). Hydrobiologia 345: 3-14.Google Scholar
  11. Edler, L., 1979. Recommendations for marine biological studies in the Baltic sea. Rep. Of Unesco Working group 11, Marine Biologists, National Swedish Env.Protection Board, Stockholm.Google Scholar
  12. Ganf, G. G. & R. L. Oliver, 1982. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. J. Ecol. 70: 829-844.Google Scholar
  13. Gaudette, H. E., W. R. Flight, L. Toner & D. W. Folger, 1974. An inexpensive titration method for determination of organic carbon in recent sediments. J. Sedim. Petrol. 44: 249-253.Google Scholar
  14. Gerloff, G. C. & F. Skoog, 1957. Nitrogen as a limiting factor for the growth of Microcystis aeruginosa in southern Wisconsin lakes. Ecology 38: 556-561.Google Scholar
  15. Ghadouani A., B. Alloul, Y. Zhanc. & E. Prepas, 1998. Relationships between zooplankton community stucture and phytoplankton in two lime-treated eutrophic hardwater lakes. Freshwat. Biol. 39: 775-790.Google Scholar
  16. Goldman, C. R. & R. G. Wetzel, 1963. A study of the primary productivity of Clear Lake, California. Ecology 44: 283-294.Google Scholar
  17. Hamilton, D. P. & S. F. Mitchell, 1996. An empirical model for sediment resuspension in shallow lakes. Hydrobiologica 317: 209-220.Google Scholar
  18. Hamilton, D. P.& S. F. Mitchell, 1997.Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Fresh. Biol. 38: 159-168.Google Scholar
  19. Hanson, M. A. & M. G. Butler, 1994. Responses to food web manipulation in a shallow waterfowl lake. Hydrobiologia 279/280: 457-466.Google Scholar
  20. Holdren, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Environ. Sci. Technol. 14: 79-87.Google Scholar
  21. Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish-issues of concern in biomanipulation of lakes. Restor. Ecol. 6: 20-28.Google Scholar
  22. Hosper, S. H. & E. Jagtman, 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523-534.Google Scholar
  23. Jellison, R., L. G. Miller, J. M. Melack & G. L. Dana, 1993. Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnol. Oceanogr. 38: 1020-1039.Google Scholar
  24. Jeppesen, E. M., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen. O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219-227.Google Scholar
  25. Jeppesen, E. M., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resiliences. Mem. Ist. Ital. Idrobiol. 48: 127-148.Google Scholar
  26. Jeppesen, E. M., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes, the role of nutrient state, submerged macrophytes, and water depth. Hydrobiologia 342/343: 151-164.Google Scholar
  27. Jeppesen, E. M., M. Søndergaard, J. P. Jensen, E. Mortensen, A. M. Hansen & T. Jorgensen, 1998a. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading-an 18-year study of a shallow hypertrophic lake. Ecosystems 1: 250-267.Google Scholar
  28. Jeppesen, E. M., M. Søndergaard, B. Kronvang, J. P. Jensen, L. M. Svendsen & T. Lauridsen, 1998b. Lake and catchment management in Denmark. In: Harper, D., A. Ferguson, B. Brierley, & G. Phillips (eds), Ecological Basis for Lake and Reservoir Management.Google Scholar
  29. Kleeberg, A. & H. P. Kozerski, 1997. Phosphorus release in Lake Grosser Muggelsee and its implications for lake restoration. Hydrobiolgia 342: 9-26.Google Scholar
  30. Korzerski, H. P. & A. Kleeberg, 1998. The sediments and benthic-pelagic exchange in the shallow Lake Muggelsee (Berlin, Germany). Int. Rev. Hydrobiol. 83: 77-112.Google Scholar
  31. Kotti, M. E., A. G. Vlessidis & N. P. Evmiridis, 2000. Determination of phosphorus and nitrogen in the sediment of Lake ‘Pamvotis’ (Greece). Int. J. environ. anal. Chem. 78: 455-467.Google Scholar
  32. Michaloudi E., M. Zarftzian & P. S. Economides, 1997. The zooplankton of lake Mikri Prespa. Hydrobiologia, 351: 77-94.Google Scholar
  33. Möller-Andersen, J., 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Arch. Hydrobiol. 74: 528-550.Google Scholar
  34. Osborne, P. L., 1980. Prediction of phosphorus and nitrogen concentrations in lakes from both internal and external loading rates. Hydrobiologia 69: 229-233.Google Scholar
  35. Pashos, J., I. Kagalou & L. Natsis, 1995. Lake Pamvotis Restoration and Management Study. Municipal Enterprise for the Lake of Ioannina. Ioannina, Greece.Google Scholar
  36. Perrow, M. R., B. Moss & J. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading-a long-term study. Hydrobiologia 276: 43-52.Google Scholar
  37. Putz, K. & J. Benndorf, 1998. The importance of pre-reservoirs for the control of eutrophication of reservoirs. Wat. Sci. Tech. 37: 317-324.Google Scholar
  38. Ramm, K. & V. Scheps, 1997. Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia 342: 43-53.Google Scholar
  39. Ratsep, R., B. Nihlgård, V. N. Bashkin, P. Blazka, B. Emmet, J. Harris & M. Kruk, 1994. Agricultural impacts in the northern temperate zone. In Moldan, B. & J. Černý (eds.), Biogeochemistry of small catchments: A Tool for Environmental Research. John Wiley & Sons, New York: 361-382.Google Scholar
  40. Reckhow, K. H., 1980. Empirical lake models for phosphorus: development, applications, limitations and uncertainty. In Scavia, D. & A. Robertson (eds), Perspecitves in Lake Ecosystem Modeling. Ann Arbor Science. Ann Arbor, USA.Google Scholar
  41. Robarts R. D., M. J. Waiser, O. Hadas, T. Zohary & S. Macintyre, 1998. Relaxation of phosphorus limitation due to typhooninduced mixing in two morphologically distinct basins of Lake Biwa, Japan. Limnol. Oceanogr. 43: 1023-1036.Google Scholar
  42. Romero, J. R., J. Imberger & A. Bartzokas, Diel spatial patterns of water quality in a eutrophic shallow lake during low winds. Submitted to Aquatic Sciences.Google Scholar
  43. Romero, J. R., R. Jellison & J. M. Melack, 1998. Stratification, vertical mixing, and upward ammonium flux in hypersaline Mono Lake, California. Arch. Hydrobiol. 142: 283-315.Google Scholar
  44. Rump, H. H. & H. Krist, 1992. Laboratory Manual for the Examination of Water, Wastewater and Soil. 2nd edn., 190 pp.Google Scholar
  45. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475-486.Google Scholar
  46. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275-279.Google Scholar
  47. Schindler, D. W., 1975. Whole-lake eutrophication experiments with phosphorus, nitrogen, and carbon. Int. ver. Theor. Angew. Limnol. Verh. 19: 3221-3231.Google Scholar
  48. Schindler, D. W., 1977. The evolution of phosphorus limitation in lakes. Science 195: 260-262.Google Scholar
  49. Somlydódy, L., 1982. Water-quality modelling: a comparison of transport oriented and ecology oriented approaches. Ecol. Model. 17: 183-207.Google Scholar
  50. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind exposed Lake Arresø, Denmark. Hydrobiologia 228: 91-99.Google Scholar
  51. Søndergaard, M., P. Kristensen & E. Jeppesen, 1993. Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake Søbygård, Denmark. Hydrobiologia 342/343: 319-325.Google Scholar
  52. Sheng, Y. P. & W. Lick, 1979. The transport and resuspension of sediments in a shallow lake. J. Geophys. Res. 84: 1809-1826.Google Scholar
  53. Threlkeld, S. T., 1994. Benthic-pelagic interactions in shallow water columns: an experimentalist's perspective. Hydrobiologia 275/276: 293-300.Google Scholar
  54. Utermohl. H., 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodik. Mitt. int. ver. theor. angew. Limnol. 9: 1-38.Google Scholar
  55. Vollenweider, R. A., 1968. Water management research. OECD Paris. DAS/CSI/68.27.Google Scholar
  56. Vollenweider, R. A., 1975. Input-output models, with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37: 53-84.Google Scholar
  57. Vollenweider, R. A., 1976. Advances in defining critical load levels for phosphorus in lake eutrophication. Mem. Inst. Ital. Idrobiol. 33: 53-83.Google Scholar
  58. Wallace, B. B. & D. P. Hamilton, 1999. The effect of variations in irradiance on buoyancy regulation of Microcystis aeruginosa. Limnol. Oceanogr. 44: 273-281.Google Scholar
  59. Welch, E. B. & G. D. Schrieve, 1994. Alum treatment effectiveness and longevity in shallow lakes. Hydrobiologia 275/276: 423-431.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • José R. Romero
    • 1
    Email author
  • Iphigenia Kagalou
    • 2
  • Jörg Imberger
    • 3
  • Dimitra Hela
    • 4
  • Melina Kotti
    • 5
  • Aristides Bartzokas
    • 6
  • Triantafyllos Albanis
    • 4
  • Nicholaos Evmirides
    • 5
  • Spiros Karkabounas
    • 7
  • Joannis Papagiannis
    • 7
  • Amalia Bithava
    • 8
  1. 1.Centre for Water ResearchUniversity of Western AustraliaCrawleyAustralia
  2. 2.Municipal Enterprise of the Lake of IoanninaIoanninaGreece
  3. 3.Centre for Water ResearchUniversity of Western AustraliaCrawleyAustralia
  4. 4.Laboratory of Industrial Chemistry, Department of ChemistryUniversity of IoanninaIoanninaGreece
  5. 5.Laboratory of Analytical Chemistry, Department of ChemistryUniversity of IoanninaIoanninaGreece
  6. 6.Laboratory of Meteorology, Department of PhysicsUniversity of IoanninaIoanninaGreece
  7. 7.Medical FacultyUniversity of IoanninaIoanninaGreece
  8. 8.Region of EpirusIoanninaGreece

Personalised recommendations