Skip to main content
Log in

Synthesis and processing of nanostructured WC-Co materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study a novel approach, termed the integrated mechanical and thermal activation (IMTA) process, was used to synthesize nanostructured WC-Co powder. As a result of the integration of mechanical and thermal activation, nanostructured WC-Co powder was synthesized below 1000°C, starting from WO3, CoO and graphite powder mixtures. Furthermore, consolidation of the nanostructured WC-Co powder via high velocity oxy-fuel (HVOF) thermal spraying and solid state sintering was investigated. The results demonstrated the feasibility of converting the nanostructured WC-Co powder to coatings and bulk components, the properties of which are either comparable to or better than that of the conventional coarse-grained counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Nanostruct.Mater. 1 (1992) 1.

    Google Scholar 

  2. K. Jia and T. E. Fischer, Wear 200 (1996) 206.

    Google Scholar 

  3. D. H. Jack, in “Engineering Application of Ceramic Materials” (ASM International, Materials Park, OH, 1985) p. 147.

    Google Scholar 

  4. S. Mi and T. H. Courtney, Scripta Mater. 38(1) (1998) 171.

    Google Scholar 

  5. M. Sherif, E. i-eskandarany, M. Omori, M. Ishikuro, T. J. Konno, K. Takada, K. Sumiyama, T. Hirai and K. Suzuki, Metall. Mater.Tans.27A(12) (1996) 4210.

    Google Scholar 

  6. Y. T. Zhu and A. Manthiram, J.Amer.Ceram.Soc. 77(10) (1994) 2777.

    Google Scholar 

  7. B. H. Kear and L. E. MCCandish, Nanostruct.Mater. 3 (1993) 19.

    Google Scholar 

  8. L. L. Shaw, R.-M. Ren and Z.-G. Yang, US Patent no. 6,214,309.

  9. R.-M. Ren, Z.-G. Yang and L. L. Shaw, Ceram.Eng. Sci.Proc. 19(4) (1998) 461.

    Google Scholar 

  10. Idem., Scripta Mater. 38(5) (1998) 735.

    Google Scholar 

  11. L. L. Shaw, Adv.Eng.Mater. 2(11) (2000) 721.

    Google Scholar 

  12. L. L. Shaw, Z.-G. Yang and R.-M. Ren, J.Amer.Ceram. Soc. 81(3) (1998) 760.

    Google Scholar 

  13. R.-M. Ren, Z.-G. Yang and L. L. Shaw, Nanostruct. Mater. 11(1) (1999) 25.

    Google Scholar 

  14. Idem., Mater.Sci.Eng. A 286 (2000) 65.

    Google Scholar 

  15. Z.-G. Yang and L. L. Shaw, Nanostruct.Mater. 7(8) (1996) 873.

    Google Scholar 

  16. L. L. Shaw, Z.-G. Yang and R.-M. Ren, Mater.Sci.Eng. A 244 (1998) 113.

    Google Scholar 

  17. S. K. Bhaumik, G. S. Upadhyaya and M. L. Vaidya, J.Mater.Sci. 27 (1992) 1947.

    Google Scholar 

  18. R.-M. Ren, Z.-G. Yang and L. L. Shaw, J.Amer.Ceram. Soc. 85 (2002) 819.

    Google Scholar 

  19. B. Aronsson and H. Pastor, in “Powder Metallurgy: An Overview” (The Institute of Metals, London, 1991) p. 312.

    Google Scholar 

  20. S. Yih and C. Wang, in “Tungsten: Source, Metallurgy, Properties and Applications” (Plenum Press, New York, 1979) p. 385.

    Google Scholar 

  21. H. L. De Villiers Lovelock, J.Therm.Spray Technol. 7(3) (1998) 357.

    Google Scholar 

  22. Y. Arata, A. Ohmori and E. Gofuku, Transactions of JWRI 14(2) (1985) 67.

    Google Scholar 

  23. O. Knacke, O. Kubaschewski and K. Hesselmann (eds.), in “Thermochemical Properties of Inorganic Substances” (Springer-Verlag, Berlin, Germany, 1991).

    Google Scholar 

  24. J. Nerz, B. Knshner and A. Rotolico, in “Protective Coatings: Processing and Characterization, ” edited by R. M. Yaxici (TMS, Warrendale, PA, 1990) p. 135.

    Google Scholar 

  25. J. R. Fincke, W. D. Swank and D. C. Haggard, in “Proceedings of the 7th national Thermal Spray Conference, ” edited by C. C. Berndt and S. Sampath (ASM International, Materials Park, OH, 1994) p. 325.

    Google Scholar 

  26. C.-J. Liu, A. Ohmori and Y. Harada, J.Mater.Sci. 31 (1996) 785.

    Google Scholar 

  27. C. Verdon, A. Karimi and J.-L. Martin, Mater.Sci. Eng. A 245 (1998) 11.

    Google Scholar 

  28. C.-J. Li, A. Ohmori and Y. Harada, J.Therm.Spray Technol. 5(1) (1996) 69.

    Google Scholar 

  29. M. L. Lau, H. G. Jiang, W. Nuchter and E. J. Lavernia, Phys.Stat.Sol. (a) 166 (1998) 257.

    Google Scholar 

  30. L. Pawlowski, in “The Science and Engineering of Thermal Spray Coatings” (John Wiley & Sons Ltd, Chichester, England, 1995) p. 210.

    Google Scholar 

  31. J. He, M. Ice, S. Dallek and E. J. Lavernia, Metall. Mater.Trans. 31A(2) (2000) 541.

    Google Scholar 

  32. C. Herring, J.Appl.Phys. 21 (1950) 301.

    Google Scholar 

  33. G. Gille and B. Szesny and G. Leitner, J.Advanced Mater. 31(2) (1999) 9.

    Google Scholar 

  34. B. K. Kim, G. H. Ha and D. W. Lee, J.Mater.Processing Technol. 63 (1997) 317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, ZG., Shaw, L.L. Synthesis and processing of nanostructured WC-Co materials. Journal of Materials Science 37, 3397–3403 (2002). https://doi.org/10.1023/A:1016553426227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016553426227

Keywords

Navigation