, Volume 474, Issue 1–3, pp 223–227 | Cite as

Instar-specific head and body lengths of Hyalella(Amphipoda): criteria for starting and endpoints in experimental studies

  • A. T. Kokkotis
  • J. D. McLaughlinEmail author


Abstract Instar-specific data on head length and body length of Hyalella azteca was obtained from live specimens reared individually at 23 ± 1 °C under a 14L:10D photoperiod and with food ad lib. Both head length and body length were strong predictors of instar number through instars 1 – 10. The relationship between instar number and head length was linear (head length [μm] = 104.28 + 61.05[instar]; r2=0.98, P<0.001), whereas that between instar and body length was not (body length [μm] = 1339.28 + 55.82[instar]2; r2 = 0.97 , P< 0.001). Head length measurements were easier to obtain and were more accurate than body measurements. Both measurements can be obtained without injury to the animal, permitting repeated observations on the same individual.

Hyalella azteca Amphipoda growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, F. G. & H. E. Welch, 1972. The occurrence, life cycle and pathogenicity of Echinuria uncinata (Rudolphi, 1819) Soloviev, 1912 (Spirurida, Nematoda) in waterfowl at Delta, Manitoba. Can. J. Zool. 50: 385-393.Google Scholar
  2. Bartlett, C. M., R. C. Anderson & P. L. Wong, 1989. Skrjabinocerca prima (Nematoda: Acuarioidea) in Hyalella azteca (Amphipoda) and Recurvirostra americana (Aves: Charadriiformes) with comments on precosity. Can. J. Zool. 67: 2883-2892.Google Scholar
  3. Bousfield, E. L., 1958. Freshwater amphipod crustaceans of glaciated North America. Can. Field Nat. 72: 55-113.Google Scholar
  4. Bousfield, E. L., 1996. A contribution to the reclassification of neotropical freshwater hyalellid amphipods (Crustacea: Gammaridea: Talitroidea). Boll. Mus. Civ. St. Nat. Verona 20: 175-214.Google Scholar
  5. Cannon, L. R. G., 1971. The life cycles of Bunodera sacculata and Bunodera luciopercae (Trematoda: Allocreadiidae) in Algonquin Park, Ontario. Can. J. Zool. 49: 1417-1429.Google Scholar
  6. Cooper, W. E., 1965. Dynamics and production of a natural population of the fresh-water amphipod Hyalella azteca. Ecol. Monogr. 35: 377-394.Google Scholar
  7. de March, B. G. E., 1977. The effects of photoperiod and temperature on the induction and termination of reproductive resting stage in the freshwater amphipod Hyalella azteca (Saussure). Can. J. Zool. 55: 1595-1600.Google Scholar
  8. de March, B. G. E., 1978. The effects of constant and variable temperatures on the size, growth and reproduction of the freshwater amphipod Hyalella azteca (Saussure). Can. J. Zool. 56: 1801-1806.Google Scholar
  9. de March, B. G. E., 1981. Hyalella azteca (Saussure). In Lawrence, S. G. (ed.), Manual for the Culture of Selected Freshwater Invertebrates. Government of Canada, Fisheries and Oceans, Ottawa. Can. Spec. Publ. Fish. and Aquat. Sci. 54: 61-77.Google Scholar
  10. Denny, M., 1969. Life cycles of helminth parasites using Gammarus lacustris as an intermediate host in a Canadian lake. Parasitology 59: 795-827.Google Scholar
  11. Duan, Y., S. I. Guttman & J. T. Oris, 1997. Genetic differentiation among laboratory populations of Hyalella azteca: implications for toxicology. Environ. Toxicol. Chem. 16: 661-695.Google Scholar
  12. Edwards, T. D. & B. C. Cowell, 1992. Population dynamics and secondary production of Hyalella azteca (Amphipoda) in Typha stands of a subtropical lake. J. n. am. Benthol. Soc. 11: 69-79.Google Scholar
  13. Geisler, Sr. F. S., 1944. Studies on the postembryonic development of Hyalella azteca (Saussure). Biol. Bull. (Woods Hole, Mass.) 86: 6-22.Google Scholar
  14. Hazen, T. C. & G.W. Esch, 1977. Studies on the population biology of two larval trematodes in the amphipod Hyalella azteca. Am. midl. Nat. 98: 213-219.Google Scholar
  15. Hogg, I., C. Larose, Y. de Lafontaine & K. G. Doe, 1998. Genetic evidence for a Hyalella species complex within the Great Lakes-St. Lawrence River drainage basin: implications for ecotoxicology and conservation biology. Can. J. Zool. 76: 1134-1140.Google Scholar
  16. Keithly, J. & M. J. Ulmer, 1965. Experimental development of cystacanths of Polymorphus sp. in the amphipod Hyalella azteca. J. Parasitol. 51: (2 sect 2) Abstract 60.Google Scholar
  17. Kokkotis, A. T., 1998. Host-parasite interactions between the cysticercoid larvae of the cestode Microsomacanthus hopkinsi and the amphipod intermediate host Hyalella azteca. MSc Thesis, Concordia University, Montréal, QC, Canada.Google Scholar
  18. Lindeman, D. H. & W. T. Momot, 1983. Production of the amphipod Hyalella azteca (Saussure) in a north Ontario lake. Can. J. Zool. 61: 2051-2059.Google Scholar
  19. Nelson, M. K. & E. L. Brunson, 1995. Postembryonic growth and development of Hyalella azteca in laboratory cultures and contaminated sediments. Chemosphere 31: 3129-3140.Google Scholar
  20. Othman, M. S. & D. Pascoe, 2001. Growth, development and reproduction of Hyalella azteca (Saussure 1858) in laboratory culture. Crustaceana 74: 171-181.Google Scholar
  21. Pickard, D. P. & A. C. Benke, 1996. Population dynamics of Hyalella azteca (Amphipoda) among different habitats in a small wetland in the southeastern U.S.A. J. n. am. Benthol. Soc. 15: 537-550.Google Scholar
  22. Podesta, R. B. & J. C. Holmes, 1970a. The life cycles of three polymorphids (Acanthocephala) occurring as juveniles at Cooking Lake, Alberta. J. Parasitol. 56: 1118-1123.Google Scholar
  23. Podesta, R. B. & J. C. Holmes, 1970b. Hymenolepidid cysticercoids in Hyalella azteca of Cooking Lake, Alberta: life cycles and descriptions of four new species. J. Parasitol. 56: 1124-1134.Google Scholar
  24. Poulin, R., 1998. Evolutionary Ecology of Parasites. Chapman and Hall. London: 212 pp.Google Scholar
  25. Schell, S. C., 1975. The life history of Plagioporus shawi (McIntosh, 1939) (Trematoda: Opecoellidae) an intestinal parasite of salmonid fishes. J. Parasitol. 61: 899-905.Google Scholar
  26. Schmidt, G. D., 1964. A note on the acanthocephala parasitizing amphipod crustacea in a spring fed pond in Montana. Can. J. Zool. 42: 718.Google Scholar
  27. Smith, J. D. & M. W. Lankester, 1979. Development of swim bladder nematodes (Cystidicola spp.) in their intermediary hosts. Can. J. Zool. 57: 1736-1744.Google Scholar
  28. Sokal, R. R. & F. J. Rohlf, 1969. Biometry. W. H. Freeman and Company, San Francisco: 776 pp.Google Scholar
  29. Strong, D. R., 1972. Life history variation among populations of an amphipod (Hyalella azteca). Ecology 53: 1103-1111.Google Scholar
  30. Uznanski, R. L. & B. B. Nickol, 1976. Structure and function of Leptorhynchoides thecatus eggs. J. Parasitol. 62: 569-575.Google Scholar
  31. Wellborn, G. A., 1994. Size-based predation and prey life histories: a comparative study of freshwater amphipod populations. Ecology 75: 2104-2117.Google Scholar
  32. Wellborn, G. A., 1995. Predator community composition and patterns of variation in morphology and life history among Hyalella populations in southeast Michigan. Am. midl. Nat. 133: 322-332.Google Scholar
  33. Wen, Y. H., 1992. Life history and production of Hyalella azteca (Crustacea: Amphipoda) in a hypereutrophic prairie pond in southern Alberta. Can. J. Zool. 70: 1417-1424.Google Scholar
  34. Wilder, J., 1940. Effects of population density upon growth, reproduction, and survival ofHyalella azteca. Physiol. Zool. 13: 439-461.Google Scholar
  35. Witt, J. & P. D. Hebert, 2000. Cryptic species diversity and evolution in the amphipod genus Hyalella within central glaciated North America: a molecular phylogenetic approach. Can. J. Fish aquat. Sci. 57: 687-698.Google Scholar
  36. Wong, P. L. & R. C. Anderson, 1982. Transmission and development of Cosmocephalus obvelatus (Nematoda: Acuarioidea) of gulls (Laridae). Can. J. Zool. 60: 1426-1440.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Royal Victoria Hospital (Neonatal Division)MontrealCanada
  2. 2.Department of BiologyConcordia UniversityMontrealCanada

Personalised recommendations