Advertisement

Hydrobiologia

, Volume 474, Issue 1–3, pp 183–188 | Cite as

Effect of salinity on competition between the rotifers Brachionus rotundiformis Tschugunoff and Hexarthra jenkinae (De Beauchamp) (Rotifera)

  • S.S.S. Sarma
  • Bertin Elguea-Sánchez
  • S. Nandini
Article

Abstract

We studied the effect of different concentrations (0, 3, 6, 9 and 12 g l−1) of sodium chloride at one food level of Chlorella (1×106 cells ml−1) on competition between the rotifers B. rotundiformis and H. jenkinae, both of which were isolated from a saline lake. The population growth experiments were conducted for 3 weeks. Both the rotifer species did not survive beyond one week at a salinity of 0 g l−1. Regardless of salt concentration and the presence of a competitor, H. jenkinae reached higher densities than B. rotundiformis. When grown alone, both B. rotundiformis and H. jenkinae showed optimal peak population densities at the salinity of 6 and 9 g l−1. Since biomass wise, B. rotundiformis was larger than H. jenkinae, it showed a lower numerical abundance. Thus, the maximum peak population densities of B. rotundiformis and H. jenkinae recorded in this study were 107±3 and 203±28 ind. ml−1. The maximal rates of population increase for B. rotundiformis and H, jenkinae when grown alone were 0.264±0.003 and 0.274±0.004, respectively. Our results also indicated that B. rotundiformis and H. jenkinae coexisted better at a salinity of 6 and 9 g l−1 of sodium chloride while a salinity of 3 g l−1 favoured Hexarthra over B. rotundiformis. At 12 g l−1, both the rotifer species grown alone or together showed lower growth rates compared to those at lower salinity levels. Except 0 g l−1, in all other salinity treatments, H. jenkinae was a superior competitor to B. rotundiformis.

competition salinity Brachionus rotundiformis Hexarthra jenkinae population growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous, 1985. Methods of measuring the acute toxicity of ef-fluents to freshwater and marine organisms. US Environment Protection Agency EPA/600/4-85/013.Google Scholar
  2. Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal Biotechnology. Cambridge University Press, London.Google Scholar
  3. Bosque, T., R. Hernandez, R. Perez, R. Todoli & R. Oltra, 2001. Effects of salinity, temperature and food level on the demographic characteristics of the seawater rotifer Synchaeta littoralis Rousselet. J. exp. mar. Biol. Ecol. 258: 55-64.Google Scholar
  4. Brain, C. K., F. Ilema & R. J. Shiel, 1995. Rotifers of the Kalahari Gemsbok National Park, South Africa. Hydrobiologia 313/314: 319-324.Google Scholar
  5. DeMott, W. R., 1989. The role of competition in zooplankton succession. In: Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer, New York: 195-252.Google Scholar
  6. Downing, J. A. & F. H. Rigler (eds), 1984. A Manual for the Methods of Assessment of Secondary Productivity in Fresh Waters. 2nd edn. IBP Handbook 17. Blackwell Scientific Publ. London.Google Scholar
  7. Dumont, H. J., S. S. S. Sarma & A. J. Ali, 1995. Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshwat. Biol. 33: 39-46.Google Scholar
  8. Fielder, D. S., G. J. Purser & S. C. Battaglene, 2000. Effect of rapid changes in temperature and salinity on availability of the rotifers Brachionus rotundiformis and Brachionus plicatilis. Aquaculture 189: 85-99.Google Scholar
  9. Green, J., 1993. Zooplankton associations in East African lakes spanning a wide salinity range. Hydrobiologia 267: 249-256.Google Scholar
  10. Hutchinson, G. E., 1967. A treatise on limnology. Introduction to the Lake Biology and the Limnoplankton. Vol. 2, John Wiley & Sons, New York.Google Scholar
  11. Iyer, N. & T. R. Rao, 1996. Responses of the predatory rotifer Asplanchna intermedia to prey species differing in vulnerability: laboratory and field studies. Freshwat. Biol. 36: 521-533.Google Scholar
  12. Kak, A. & T. R. Rao, 1998. Does the evasive behavior of Hexarthra influence its competition with cladocerans? Hydrobiologia 387/388: 409-419.Google Scholar
  13. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk begründet von Max Voigt. Bornträger, Stuttgart. Vol. 1, Textband, Vol. 2, Tafelband.Google Scholar
  14. Krebs, C. J., 1985. Ecology. The Experimental Analysis of Distribution and Abundance. 3rd edn. Harper & Row, New York.Google Scholar
  15. Lampert, W. & U. Sommer, 1997. Limnoecology. The Ecology of Lakes and Streams. Oxford University Press, New York.Google Scholar
  16. Lubzens, E., G. Minkoff, Y. Barr & O. Zmora, 1997. Mariculture in Israel: Past achievements and future directions in raising rotifers as food for marine fish larvae. Hydrobiologia 358: 13-20.Google Scholar
  17. Lugo-Vásquez, A., 2000. Variación espacial y temporal de la estructura de la comunidad planctónica del lago Alchichica, Puebla, con algunos aspectos de interacciones tróficas. Doctoral Thesis, UNAM, Mexico.Google Scholar
  18. Nandini, S.& T. R. Rao, 1998. Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium Microcystis aeruginosa as food. Aquat. Ecol. 31: 283-298.Google Scholar
  19. Peredo-Alvarez, V. M., S. S. S. Sarma & S. Nandini, 2002 Combined effect of concentrations of algal food (Chlorella vulgaris) and salt (sodium chloride) on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera). Rev. Biol. Trop. (in press).Google Scholar
  20. Pourriot, R., 1965. Recherces sur l'ecologie des Rotiferes. Vie Milieu (suppl.) 21: 1-224.Google Scholar
  21. Rothhaupt, K. O., 1988. Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333: 660-662.Google Scholar
  22. Ruttner-Kolisko, A., 1974. Plankton rotifers. Die Binnengewasser Bd. 26: 1-146.Google Scholar
  23. Sarma, S. S. S., 1993. Feeding responses of Asplanchna brightwelli (Rotifera): laboratory and field studies. Hydrobiologia 255/256: 275-282.Google Scholar
  24. Sarma, S. S. S., M. A. Fernández-Araiza & S. Nandini, 1999. Competition between Brachionus calyciflorus Pallas and Brachionus patulus (Müller) (Rotifera) in relation to algal food concentration and initial population density. Aquat. Ecol. 33: 339-345.Google Scholar
  25. Sarma, S. S. S, N. Iyer & H. J. Dumont, 1996. Competitive interactions between herbivorous rotifers: importance of food concentration and initial population density. Hydrobiologia 331: 1-7.Google Scholar
  26. Sarma, S. S. S., P. S. Larios-Jurado & S. Nandini, 2001. Effect of three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Rev. Biol. Trop. 49: 75-82.Google Scholar
  27. Sarma, S. S. S., S. Nandini, P. Ramírez-García & J. E. Cortés-Muñoz, 2000. New records of brackish water Rotifera and Cladocera from Mexico. Hidrobiologica 10: 121-124.Google Scholar
  28. Sokal, R. R. & F. J. Rohlf, 1993. Biometry (3rd edn). W.H. Freeman and Company, San Francisco.Google Scholar
  29. Walz, N., S. S. S. Sarma & U. Benker, 1995. Egg size in relation to body size in rotifers: an indication of reproductive strategy? Hydrobiologia 313/314: 165-170.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • S.S.S. Sarma
    • 1
  • Bertin Elguea-Sánchez
    • 2
  • S. Nandini
    • 3
  1. 1.Laboratory of Aquatic Zoology (UMF), Division of Research and Postgraduate StudiesNational Autonomous University of MexicoTlalnepantla, State of MexicoMexico
  2. 2.Colegio de Ciencias y HumanidadesMunicipio de Naucalpan de Juárez Estado de MéxicoMexico
  3. 3.CyMA Project-Aquatic Ecology, Division of Research and Postgraduate StudiesNational Autonomous University of MexicoTlalnepantla, State of MexicoMexico

Personalised recommendations