Advertisement

Transport in Porous Media

, Volume 49, Issue 2, pp 175–190 | Cite as

Analytical Solutions for Reactive Transport of Multiple Volatile Contaminants in the Vadose Zone

  • Yunwei Sun
  • James N. Petersen
  • Thomas A. Buscheck
  • John J. Nitao
Article

Abstract

Groundwater contamination usually originates from surface contamination. Contaminants then move downward through the vadose zone and finally reach the groundwater table. To date, however, analytical solutions of multi-species reactive transport are limited to transport only in the saturated zone. The motivation of this work is to utilize analytical solutions, which were previously derived for single-phase transport, to describe the reactive transport of multiple volatile contaminants in the unsaturated zone. A mathematical model is derived for describing transport with phase partitioning of sequentially reactive species in the vadose zone with constant flow velocity. Linear reaction kinetics and linear equilibrium partitioning between vapor, liquid, and solid phases are assumed in this model.

analytical solution vadose zone multi-species transport VOC first-order reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baehr, A. L., Stackelberg, P. E. and Baker, R. J.: 1999, Evaluation of the atmosphere as a source of volatile organic compounds in shallow groundwater, Water Resour. Res. 35(1), 127–136.Google Scholar
  2. Bear, J.: 1979, Groundwater Hydraulics, McGraw-Hill, New York.Google Scholar
  3. Beljin, M. S.: 1991, Review of three-dimensional analytical models for solute transport in ground-water system, International groundwater modeling center, Holcomb Research Institute, Butler University, Indiana.Google Scholar
  4. Borden, R. C. and Bedient, P. B.: 1986, Transport of dissolved hydrocarbon influenced by reaeration and oxygen limited biodegradation: Theoretical development, Water Resour. Res. 22, 1973–1982.Google Scholar
  5. Bouwer, E. J., Rittmann, B. E. and McCarty, P. L.: 1981, Anaerobic degradation of halogenated 1-and 2-carbon organic compounds, Environ. Sci. Technol. 15(5), 596–599.Google Scholar
  6. Cho, C. M.: 1970, Convective transport of ammonium with nitrification in soil, Can. J. Soil Sci. 51,339–350.Google Scholar
  7. Clement, T. P., Sun, Y., Hooker, B. S. and Petersen, J. N.: 1998. Modeling multi-species reactive transport in groundwater aquifers, Groundwater Monitor Remedia. 18(2), 79–92.Google Scholar
  8. Culver, T. B., Shoemaker, C. A. and Lion, L. W.: 1991, Impact of vapor sorption on the subsurface transport of volatile organic compounds: A numerical model and analysis, Water Resour. Res. 27(9), 2259–2270.Google Scholar
  9. Freeman, D. L. and Gossett, J. M.: 1989, Biological reductive dechlorination of tetrachloroethylene and trichoroethylene to ethylene under methanogenic conditions, Appl. Eviron. Microbiol. 55(9), 2144–2151.Google Scholar
  10. Glod, G., Angst, W., Holliger, C. and Schwarzenbach, R. P.: 1997, Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Kinetics and reaction mechanisms, Environ. Sci. Technol. 31, 253–260.Google Scholar
  11. Golub, G. H. and Van Loan, C. F.: 1996, Matrix Computations, The John Hopkins University Press, Baltimore and London.Google Scholar
  12. Hooker, B. S., Skeen, R. S. and Petersen, J. N.: 1994, Biological destruction of CCl4: kinetic modeling, Biotechnol. Bioeng. 44, 211–218.Google Scholar
  13. Jury, W. A., Spencer, W. F. and Farmer, W. J.: 1983, Behavior assessment model for tracer organics in soil, I, model description, J. Environ. Qual. 12(4), 558–564.Google Scholar
  14. Lunn, M., Lunn, R. J. and Mackay, R.: 1996, Determining analytic solutions of multiple species contaminant transport with sorption and decay, J. Hydrol. 180, 195–210.Google Scholar
  15. McNab, W. W. Jr., Narasimhan, T. N.: 1993, A multiple species transport model with sequential decay chain interactions in heterogeneous subsurface environments, Water Resour. Res. 29(8), 2737–2746.Google Scholar
  16. McCarty, P. L., Beck, L. and Amant, O. S.: 1969, Biological denitrification of wastewaters by addition of organic materials, presented at the 24th Annual Industrial Waste Conference, Purdue University, West Lafayette.Google Scholar
  17. McCarty, P. L. and Semprini, L.: 1994, Ground-water treatment for chlorinated solvents. in: Norris et al.,(eds),Handbook of Bioremediation, Lewis Publishers.Google Scholar
  18. Molz, F. J., Widdowson, M. A. and Benefield, L. D.: 1986, Simulation of microbial growth dynamic coupled to nutrient and oxygen transport in porous media, Water Resour. Res. 22(8), 1207–1216.Google Scholar
  19. Nitao, J. J.: 1998. User's Manual for the USNT Module of the NUFT Code, Version 2 (NP-phase, NC-component, thermal), Lawrence Livermore National Laboratory, UCRL-MA-130653.Google Scholar
  20. Pigford, T. H., Chambre, P. L., Albert, M., Foglia, M., Harada, M., Iwamoto, F., Kanki, T., Leung, D., Masuda, S., Muraka, S. and Ting, D.: 1980, Migration of radionuclides through sorbing media: analytical solutions II, ONWI 360(1), LBL-11616, UCB-NE-4003.Google Scholar
  21. Rifai, S. H. and Bedient, P. B., 1990. Comparison of biodegradation kinetics with an instantaneous reaction model for groundwater, Water Resour. Res. 26(4), 637–645.Google Scholar
  22. Shoemaker, A. C., Culver, T. B., Lion, L. W. and Peterson, M. G.: 1990, Analytical models of the impact of two-phase sorption on the subsurface transport of volatile chemicals, Water Resour. Res. 26(4), 745–758.Google Scholar
  23. Sun, Y., Petersen, J. N., Clement, T. P. and Skeen, R. S.: 1999. Development of analytical solutions for multi-species transport with serial and parallel reactions, Water Resour. Res. 35(1), 185–190.Google Scholar
  24. Tim, U. S. and Mostaghimi, S.: 1989. Modeling transport of a degradable chemical and its metabolites in the unsaturated zone, Ground Water 27(5), 672–681.Google Scholar
  25. van Genuchten, M. Th. and Alves, W. J.: 1982, Analytical solutions of the one-dimensional convective-dispersive solute transport equation, U. S Department of Agriculture Technical Bulletin, 1661.Google Scholar
  26. van Genuchten, M. Th.: 1985, Convective-dispersive transport of solutes involved in sequential first-order decay reactions, Comput. Geosci. 11(2), 129–147.Google Scholar
  27. Vogel, T. M., Criddle, C. S. and McCarty, P. L.: 1987, Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21(8), 722–736.Google Scholar
  28. Waddill, D. W., Widdowson, M. A.: 1998, Three-dimensional model for subsurface transport and biodegradation, J. Environ. Eng. 124(4), 336–344.Google Scholar
  29. Xu, T., Gerard, F., Pruess, K. and Brimhall, G.: 1997, Modeling non-isothermal multiphase multis-pecies reactive chemical transport in geological media, Lawrence Berkeley National Laboratory, LBNL-40504, UC-400.Google Scholar
  30. Xu, T., Samper, J., Ayora, C., Manzano, M. and Custodio, E.: 1999, Modeling of non-isothermal multi-component reactive transport in field scale porous media flow systems, J. Hydrol. 214, 144–164.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Yunwei Sun
    • 1
  • James N. Petersen
    • 2
  • Thomas A. Buscheck
    • 1
  • John J. Nitao
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreU.S.A
  2. 2.WSU/NSF IGERT Center of Multiphase Environmental ResearchWashington State UniversityPullmanU.S.A

Personalised recommendations