Skip to main content
Log in

Aspects of Deep Ocean Mixing

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The turbulent motions responsible for ocean mixing occur on scales much smaller than those resolved in numerical simulations of oceanic flows. Great progress has been made in understanding the sources of energy for mixing, the mechanisms, and the rates. On the other hand, we still do not have adequate answers to first order questions such as the extent to which the thermohaline circulation of the ocean, and hence the earth's climate, is sensitive to the present mixing rates in the ocean interior. Internal waves, generated by either wind or flow over topography, appear to be the principle cause of mixing. Mean and eddy flows over topography generate internal lee waves, while tidal flows over topography generate internal tides. The relative importance of these different internal wave sources is unknown. There are also great uncertainties about the spatial and temporal variation of mixing. Calculations of internal tide generation are becoming increasingly robust, but we do not know enough about the subsequent behavior of internal tides and their eventual breakdown into turbulence. It does seem, however, that most internal tide energy flux is radiated away from generation sites as low modes that propagate over basin scales. The mechanisms of wave-wave interaction and topographic scattering both act to transfer wave energy from low modes to smaller dissipative scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford, M. H. (2001a): Fine-structure contamination: observations and a model of a simple two-wave case. J. Phys. Oceanogr., 31, 2645–2649.

    Article  Google Scholar 

  • Alford, M. H. (2001b): Internal swell generation: The spatial distribution of energy flux from the wind to mixed-layer near-inertial motions. J. Phys. Oceanogr., 31, 2359–2368.

    Article  Google Scholar 

  • Armi, L. (1978): Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 1971–1979.

    Google Scholar 

  • Baines, P. G. (1973): The generation of internal tides by flat-bump topography. Deep-Sea Res., 20, 179–205.

    Google Scholar 

  • Baines, P. G. (1982): On internal tide generation models. Deep-Sea Res., 29, 307–338.

    Article  Google Scholar 

  • Balmforth, N. J., G. R. Ierley and W. R. Young (2001): Tidal conversion by nearly critical topography. J. Phys. Oceanogr. (submitted).

  • Bell, T. H. (1975a): Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705–722.

    Article  Google Scholar 

  • Bell, T. H. (1975b): Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320–327.

    Google Scholar 

  • Bryan, F. (1987): Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970–985.

    Article  Google Scholar 

  • Cox, C. S. and H. Sandstrom (1962): Coupling of surface and internal waves in water of variable depth. Journal of the Oceanographic Society of Japan, 20th Anniversary Volume, 499–513.

  • Craig, P. D. (1987): Solutions for internal tide generation over coastal topography. J. Mar. Res., 45, 83–105.

    Article  Google Scholar 

  • Cummins, P. F., J. Y. Cherniawski and M. G. G. Foreman (2001): North Pacific internal tides from the Aleutian Ridge: Altimeter observations and modelling. J. Mar. Res., 59, 167–191.

    Article  Google Scholar 

  • D'Asaro, E. A. (1991): A strategy for investigating and modeling internal wave sources and sinks. p. 451–465. In Dynamics of Oceanic Internal Gravity Waves, Proc. ‘Aha Huliko’ a Hawaiian Winter Workshop, ed. by P. Muller and D. Henderson, SOEST.

  • Davis, R. E. (1994): Diapycnal mixing in the ocean: Equations for large-scale budgets. J. Phys. Oceanogr., 24, 777–800.

    Article  Google Scholar 

  • Egbert, G. D. (1997): Tidal data inversion: Interpolation and inference. Prog. Oceanogr., 40, 81–108.

    Article  Google Scholar 

  • Egbert, G. D. and R. D. Ray (2000): Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–778.

    Article  Google Scholar 

  • Egbert, G. D. and R. D. Ray (2001): Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter data. J. Geophys. Res. (in press).

  • Egbert, G. D., A. F. Bennett and M. G. G. Foreman (1994): TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24821–24852.

    Article  Google Scholar 

  • Eriksen, C. C. (1998): Internal wave reflection and mixing at Fieberling Guyot. J. Geophys. Res., 103, 2977–2994.

    Article  Google Scholar 

  • Ferron, B., H. Mercier, K. Speer, A. Gargett and K. Polzin (1998): Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 1929–1945.

    Article  Google Scholar 

  • Gargett, A. and J. Marra (2001): Effects of upper ocean physical processes—Turbulence, advection, and air-sea interaction—on oceanic primary production. In The Sea: Biological-Physical Interactions in the Ocean, ed. by A. R. Robinson, J. J. McCarthy and B. J. Rothschild, John Wiley & Sons (in press).

  • Garrett, C. (2001): Stirring and mixing: What are the rate-controlling processes? p. 1–8. In Proceedings of the Twelfth ‘Aha Huliko’ a Hawaiian Winter Workshop, ed. by P. Muller and D. Henderson, SOEST.

  • Garrett, C. and D. Gilbert (1988): Estimates of vertical mixing by internal waves reflected off sloping topography. p. 405–424. In Small-Scale Turbulence and Mixing in the Ocean, ed. by J. C. J. Nihoul and B. M. Janard, Elsevier Scientific.

  • Garrett, C., P. MacCready and P. Rhines (1993): Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Ann. Rev. Fluid Mech., 25, 291–323.

    Article  Google Scholar 

  • Gerkema, T. (2001): Internal and interfacial tides: Beam scattering and local generation of solitary waves. J. Mar. Res., 59, 227–255.

    Article  Google Scholar 

  • Gnanadesikan, A. (1999): A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 2077–2079.

    Article  Google Scholar 

  • Gregg, M. C. (1989): Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686–9698.

    Google Scholar 

  • Hendershott, M. C. (1981): Long waves and ocean tides. p. 292–341. In Evolution of Physical Oceanography, ed. by B. A. Warren and C. Wunsch, The MIT Press.

  • Henyey, F. S., J. Wright and S. M. Flatte (1986): Energy and action flow through the internal wave field: an eikonal approach. J. Geophys. Res., 91, 8487–8495.

    Article  Google Scholar 

  • Hibiya, T. (1986): Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91, 7697–7708.

    Google Scholar 

  • Hibiya, T. and M. Watanabe (2001): Global estimates of the wind-induced inertial energy. Geophys. Res. Lett. (submitted).

  • Hirst, E. (1991): Internal wave-wave resonance theory: Fundamentals and limitations. p. 211–226. In Dynamics of Oceanic Internal Gravity Waves, Proc. ‘Aha Huliko’ a Hawaiian Winter Workshop, ed. by P. Muller and D. Henderson, SOEST.

  • Hogg, N. G., P. Biscaye, E. Gardner and W. J. Schmitz (1982): On the transport of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40,Suppl., 231–263.

    Google Scholar 

  • Holloway, P. E. and M. A. Merrifield (1999): Internal tide generation by seamounts, ridges and islands. J. Geophys. Res., 104, 25,937–25,951.

    Google Scholar 

  • Huang, R. X. and R. L. Chou (1994): Parameter sensitivity study of the saline circulation. Clim. Dyn., 9, 391–409.

    Article  Google Scholar 

  • Khatiwala, S. (2001): Generation of internal tides in the ocean. Deep-Sea Res. (submitted).

  • Kunze, E. and J. M. Toole (1997): Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 2663–2693.

    Article  Google Scholar 

  • Kunze, E., L. K. Rosenfeld, G. S. Carter and M. C. Gregg (2001): Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr. (submitted).

  • Ledwell, J. R., A. J. Watson and C. S. Law (1998): Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21,499–21,529.

    Article  Google Scholar 

  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt and J. M. Toole (2000): Mixing over rough topography in the Brazil Basin. Nature, 403, 179–182.

    Article  Google Scholar 

  • Li, M. (2001): Energetics of internal tides radiated from deep-ocean topographic features. J. Phys. Oceanogr. (submitted).

  • Lien, R.-C. and M. C. Gregg (2001): Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 4575–4592.

    Article  Google Scholar 

  • Llewellyn Smith, S. G. and W. R. Young (2001): Conversion of the barotropic tide. J. Phys. Oceanogr. (submitted).

  • Lott, F. and H. Teitelbaum (1993): Linear unsteady mountain waves. Tellus, 45, 201–220.

    Article  Google Scholar 

  • Lueck, R. G. and T. D. Mudge (1997): Topographically induced mixing around a shallow seamount. Science, 276, 1831–1833.

    Article  Google Scholar 

  • McComas, C. H. and P. Müller (1981a): The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970–986.

    Article  Google Scholar 

  • McComas, C. H. and P. Müller (1981b): Time scales of resonant interactions among oceanic internal waves. J. Geophys. Res., 83, 1397–1412.

    Google Scholar 

  • McDougall, T. (1991): Parameterizing mixing in inverse models. p. 355–386. In Dynamics of Oceanic Internal Gravity Waves, Proc. ‘Aha Huliko’ a Hawaiian Winter Workshop, ed. by P. Muller and D. Henderson, SOEST.

  • Merrifield, M. A., P. E. Holloway and T. M. Shaun Johnston (2001): The generation of internal tides at the Hawaiian Ridge. Geophys. Res. Lett., 28, 559–562.

    Article  Google Scholar 

  • Mihaly, S. F., R. E. Thomson and A. B. Rabinovich (1998): Evidence for nonlinear interaction between internal waves of inertial and semidiurnal frequency. Geophys. Res. Lett., 25, 1205–1208.

    Article  Google Scholar 

  • Morris, M. Y., M. M. Hall, L. C. St. Laurent and N. G. Hogg (2001): Abyssal mixing in the Brazil Basin. J. Phys. Oceanogr., 31, 3331–3348.

    Article  Google Scholar 

  • Müller, P. and N. Xu (1992): Scattering of oceanic internal waves off random bottom topography. J. Phys. Oceanogr., 22, 474–488.

    Article  Google Scholar 

  • Müller, P., G. Holloway, F. Henyey and N. Pomphrey (1986): Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493–536.

    Google Scholar 

  • Munk, W. H. (1966): Abyssal recipes. Deep-Sea Res., 13, 707–730.

    Google Scholar 

  • Munk, W. and C. Wunsch (1998): Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res., 45, 1977–2010.

    Article  Google Scholar 

  • Nagasawa, M., Y. Niwa and T. Hibiya (2000): Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105, 13933–13943.

    Article  Google Scholar 

  • Nakamura, T., T. Awaji, T. Hatayama and K. Akitomo (2000): The generation of large amplitude unsteady lee waves by subinertial Kl tidal flow: A possible vertical mixing mechanism in the Kuril Straits. J. Phys. Oceanogr., 30, 1601–1621.

    Article  Google Scholar 

  • New, A. L. and J. C. B. Da Silva (2001): Remote-sensing evidence for the local generation of internal soliton packets in the central Bay of Biscay. Deep-Sea Res. I (in press).

  • Niwa, Y. and T. Hibiya (2001): Numerical study of the spatial distribution of the M2 internal tide in the Pacific ocean. J. Geophys. Res. (in press).

  • Olbers, D. J. (1983): Models of the oceanic internal wave field. Rev. Geophys., 21, 1567–1606.

    Google Scholar 

  • Olbers, D. J. and N. Pomphrey (1981): Disqualifying two candidates for the energy balance of oceanic internal waves. J. Phys. Oceanogr., 11, 1423–1425.

    Article  Google Scholar 

  • Polzin, K. and E. Firing (1997): Estimates of diapycnal mixing using LADCP and CTD data from I8S. International WOCE Newsletter, 29, 39–42.

    Google Scholar 

  • Polzin, K. L., J. M. Toole and R. W. Schmitt (1995): Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306–328.

    Article  Google Scholar 

  • Polzin, K. L., J. M. Toole, J. R. Ledwell and R. W. Schmitt (1997): Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96.

    Article  Google Scholar 

  • Rattray, M., Jr. (1960): On the coastal generation of internal tides. Tellus, 22, 54–62.

    Article  Google Scholar 

  • Ray, R. and G. T. Mitchum (1996): Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 2101–2104.

    Article  Google Scholar 

  • Ray, R. and G. T. Mitchum (1997): Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges. Prog. Oceanogr., 40, 135–162.

    Article  Google Scholar 

  • Robinson, A. R. (ed.) (1983): Eddies in Marine Science. Springer-Verlag, 609 pp.

  • St. Laurent, L. C. and C. Garrett (2001): The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. (submitted).

  • St. Laurent, L. and R. W. Schmitt (1999): The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 24, 1404–1424.

    Article  Google Scholar 

  • St. Laurent, L. C., J. M. Toole and R. W. Schmitt (2001): Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 3476–3495.

    Article  Google Scholar 

  • Schmitt, R. W. (1994): Double diffusion in oceanography. Ann. Rev. Fluid Mech., 26, 255–285.

    Article  Google Scholar 

  • Seibold, E. and W. H. Berger (1996): The Sea Floor—An Introduction to Marine Geology. Springer-Verlag, 356 pp.

  • Sjöberg, B. and A. Stigebrandt (1992): Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep-Sea Res., 39, 269–291.

    Article  Google Scholar 

  • Sloyan, B. M. and S. R. Rintoul (2001): Circulation, renewal and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31, 1005–1030.

    Article  Google Scholar 

  • Speer, K., S. R. Rintoul and B. Sloyan (2000): The diabatic Deacon Cell. J. Phys. Oceanogr., 30, 3212–3222.

    Article  Google Scholar 

  • Stigebrandt, A. (1980): Some aspects of tidal interaction with fjord constriction. Estuar. Coast. Mar. Sci., 11, 151–166.

    Google Scholar 

  • Sun, H. and E. Kunze (1999a): Internal wave-wave interactions. Part 1: The role of internal wave vertical divergence. J. Phys. Oceanogr., 29, 2886–2904.

    Article  Google Scholar 

  • Sun, H. and E. Kunze (1999b): Internal wave-wave interactions. Part II: Spectral energy transfer and turbulence production. J. Phys. Oceanogr., 29, 2905–2919.

    Article  Google Scholar 

  • Tandon, A. and K. Zahariev (2001): Quantifying the role of mixed layer entrainment for water mass transformation in the North Atlantic. J. Phys. Oceanogr., 31, 1120–1131.

    Article  Google Scholar 

  • Thorpe, S. A. (1998): Nonlinear reflection of internal waves at a density discontinuity at the base of the mixed layer. J. Phys. Oceanogr., 28, 1853–1860.

    Article  Google Scholar 

  • Toggweiler, J. R. and B. Samuels (1998): On the ocean's large scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 1832–1852.

    Article  Google Scholar 

  • Toole, J. M., J. R. Ledwell, K. L. Polzin, R. W. Schmitt, E. T. Montgomery, L. St. Laurent and W. B. Owens (1997): The Brazil Basin Tracer Release Experiment. International WOCE Newsletter, 28, 25–28.

    Google Scholar 

  • Webb, D. J. and N. Suginohara (2001): Vertical mixing in the ocean. Nature, 409, 37.

    Article  Google Scholar 

  • Wunsch, C. (1975): Internal tides in the ocean. Rev. Geophys., 13, 167–182.

    Google Scholar 

  • Wunsch, C. (1996): The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Wunsch, C. (1998): The work done by the wind on the ocean circulation. J. Phys. Oceanogr., 28, 2331–2339.

    Article  Google Scholar 

  • Wunsch, C. and D. Stammer (1998): Satellite altimetry, the marine geoid and the oceanic general circulation. Annu. Rev. Earth Planet. Sci., 26, 219–253.

    Article  Google Scholar 

  • Yamazaki, H., D. L. Mackas and K. L. Denman (2001): Coupling small scale physical processes with biology. In The Sea: Biological-Physical Interactions in the Ocean, ed. by A. R. Robinson, J. J. McCarthy and B. J. Rothschild, John Wiley & Sons (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrett, C., St. Laurent, L. Aspects of Deep Ocean Mixing. Journal of Oceanography 58, 11–24 (2002). https://doi.org/10.1023/A:1015816515476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015816515476

Navigation