Skip to main content
Log in

Evolution of the Theory of Laminated Plates and Shells

  • Published:
International Applied Mechanics Aims and scope

Abstract

The theory of laminated plates and shells is considered. Three-dimensional models of layered systems and methods of reducing them to two-dimensional models are elucidated. An analysis is made of how two-dimensional models are constructed by the method of hypotheses. Two basic approaches to the construction are presented: one leads to the discrete structural theory of laminated systems and the other to continuous structural theory. Attention is drawn to transverse shear and reduction in nonclassical theories of high approximation. The finite-element implementation of the theory is described. Examples of analysis by various models are given. Results of an applicability analysis of various theories and experimental data supporting them are presented. New research areas for the theory of laminated structures are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Ya. Aleksandrov, I. Ya. Borodin, and V. V. Pavlov, Structures with Polyfoam Fillers [in Russian], Mashinostroenie, Moscow (1972).

    Google Scholar 

  2. A. Ya. Aleksandrov, L. É. Bryukker, and L. M. Kurshin, Design of Sandwich Panels [in Russian], Oborongiz, Moscow (1960).

    Google Scholar 

  3. A. Ya. Aleksandrov and L. M. Kurshin, “Multilayered plates and shells,” in: Proc. 7th All-Union Conf. on Theory of Shells and Plates [in Russian], Nauka, Moscow (1970), pp. 714–721.

    Google Scholar 

  4. Kh. Yu. Al'tenbakh, “The basic divisions of the theory of multilayered thin-walled structures (review),” Mekh. Komp. Mater., 34, No. 3, 333–348 (1998).

    Google Scholar 

  5. S. A. Ambartsumyan, “Some basic equations of the theory of thin laminated shells,” Dokl. AN Arm. SSR, 8, No. 5, 203–210 (1948).

    Google Scholar 

  6. S. A. Ambartsumyan, “Some aspects of the development of the theory of anisotropic laminated shells,” Izv. AN Arm. SSR, Ser. Fiz.-Mat. Nauk, 17, No. 3, 29–53 (1964).

    Google Scholar 

  7. S. A. Ambartsumyan, The General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  8. S. A. Ambartsumyan, The Theory of Anisotropic Plates [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  9. A. N. Andreev and V. V. Nemirovskii, “On one variant of the theory of elastic multilayered anisotropic plates,” Prikl. Mekh., 14, No. 7, 55–62 (1978).

    Google Scholar 

  10. J. H. Argyris and D. W. Scharpf, “The theory of finite-element design of plates and shells with transverse shear strains,” in: Proc. IUTAM Symp. on High Speed Computing of Elastic Structures (Liége, Belgium, August 23-28, 1970), Vol. 1, Université de Liége (1971).

  11. A. V. Babkov, “Study of laminated orthotropic shells of revolution made of viscoelastic thermorheologically complex materials,” Prikl. Mekh., 34, No. 8, 82–90 (1998).

    Google Scholar 

  12. L. V. Baev and P. P. Chulkov, “Designing laminated plates revisited,” Mekh. Polim., No. 6, 11–18 (1969).

    Google Scholar 

  13. V. A. Bazhenov, E. A. Gotsulyak, A. I. Ogloblya et al., Designing Composite Structures with Stratifications [in Russian], Budivel'nyk, Kiev (1992).

    Google Scholar 

  14. V. A. Bazhenov, A. S. Sakharov, A. V. Gondlyakh, and S. L. Mel'nikov, Nonlinear Problems of the Mechanics of Multilayered Shells [in Russian], NDI Budmekhanika, Kiev (1994).

    Google Scholar 

  15. V. N. Bakulin and A. A. Rassokha, The Finite-Element Method and Hologram Interferometry in the Mechanics of Composites [in Russian], Mashinostroenie, Moscow (1987).

    Google Scholar 

  16. V. N. Barsukov, The General Theory of Flat Multilayered Shells of Irregular Structure with Compressible Fillers [in Russian], Manuscript No. 2794 deposited at VINITI 02.14.75, Kiev (1975).

  17. G. Bartelds and H. Ottens, “Finite-element analysis of laminated panels,” in: Proc. IUTAM Symp. on High Speed Computing of Elastic Structures (Liége, Belgium, August 23-28, 1970), Vol. 1, Université de Liége (1971).

  18. A. E. Bogdanovich, Nonlinear Dynamic Problems for Cylindrical Composite Shells [in Russian], Zinatne, Riga (1987).

    Google Scholar 

  19. V. V. Bolotin, “The theory of laminated plates revisited,” Izv. AN SSSR, Otd. Tekhn. Nauk, Mekh. Mashinostr., No. 3, 65–72 (1963).

    Google Scholar 

  20. V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayered Structures [in Russian], Mashinostroenie, Moscow (1980).

    Google Scholar 

  21. A. G. Bondar and A. O. Rasskazov, “Bending analysis of multilayered plates by a refined theory,” Prikl. Mekh., 18, No. 12, 69–72 (1982).

    Google Scholar 

  22. L. E. Bryukker, “Some simplifications of the bending equations for sandwich plates,” in: Design of Airframe Elements [in Russian], Issue 3, Mashinostroenie, Moscow (1965), pp. 74–99.

    Google Scholar 

  23. P. M. Varvak, I. M. Buzun, A. S. Gorodetskii et al., Finite-Element Method [in Russian], Vyshcha Shkola, Kiev (1981).

    Google Scholar 

  24. A. T. Vasilenko, “The stress state of orthotropic laminated thick-walled shallow shells,” Dop. AN USSR, No. 6, 513–517 (1975).

    Google Scholar 

  25. A. T. Vasilenko and Ya. M. Grigorenko, “Stress analysis of anisotropic shells in various formulations,” Prikl. Mekh., 21, No. 4, 4–7 (1985).

    Google Scholar 

  26. A. T. Vasilenko, Ya. M. Grigorenko, and N. D. Pankratova, “The stress state of transversally isotropic inhomogeneous thick-walled spherical shells,” Dokl. AN SSSR, Mekh. Tverd. Tela, No. 1, 59–66 (1976).

    Google Scholar 

  27. V. V. Vasil'ev, Mechanics of Composite Structures [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  28. I. N. Vekua, “On one design technique for prismatic shells,” in: Tr. Tbilisskogo Mat. Inst., 21, 191–195 (1955).

    Google Scholar 

  29. V. E. Verizhenko, “Theory of nonlinearly elastic laminated shells with transverse shear strains,” Prikl. Mekh., 20, No. 9, 123–127 (1984).

    Google Scholar 

  30. V. E. Verizhenko, V. G. Piskunov, V. K. Prisyazhnyuk, and P. Ya. Tabakov, “A refined dynamic theory of multilayered shells and plates,” Probl. Prochn., “Report 1. The initial hypotheses and relations,” No. 5, 91-99, “Report 2. System of resolving equations and results,” No. 6, 61-69, (1996).

  31. V. E. Verizhenko, V. K. Prisyazhnyuk, and S. G. Burygin, “A refined model of a laminated composite shell for solution of a contact elastoplastic problem,” Mekh. Komp. Mater., No. 4, 672–677 (1986).

    Google Scholar 

  32. B. F. Vlasov, “On one case of bending of a rectangular thick plate,” Vestn. MGU, No. 2, 25–34 (1957).

    Google Scholar 

  33. V. Z. Vlasov, General Shell Theory and Its Engineering Applications (Selected Works) [in Russian], Vol. 1, Izd. AN SSSR, Moscow (1962).

    Google Scholar 

  34. V. Z. Vlasov and N. N. Leont'ev, Beams, Plates, and Shells on an Elastic Base [in Russian], Gosfizmatlit, Moscow (1960).

    Google Scholar 

  35. A. S. Vol'mir, Stability of Elastic Systems [in Russian], Gostekhizdat, Moscow (1963).

    Google Scholar 

  36. I. I. Vorovich, “Some mathematical issues of the theory of plates and shells,” in: Proc. 2nd All-Union Congr. on Solids Mechanics, Issue 3, Nauka, Moscow (1965), pp. 116–136.

    Google Scholar 

  37. B. G. Galerkin, Collected Works [in Russian], Vol. 1, Izd. AN SSSR, Moscow (1952), pp. 347–362.

    Google Scholar 

  38. M. D. Galileev, “A multilayered anisotropic plate on an elastic base,” Izv. Vuzov, Stroit. Arkhitekt., No. 2, 31–37 (1973).

    Google Scholar 

  39. A. K. G alin'sh, “Refined designing of plates and shells,” in: Research in the Theory of Plates and Shells [in Russian], Izd. Kazanskogo Univ., Kazan, Issue 5 (1967), pp. 66–92, Issues 6 and 7 (1967), pp. 23-63.

    Google Scholar 

  40. A. L. Gol'denveizer, “On Reissner's theory of bending of plates,” Izv. AN SSSR, Otd. Tekhn. Nauk, No. 4, 102–109 (1958).

    Google Scholar 

  41. A. L. Gol'denveizer, “Construction of an approximate shell theory through asymptotic integration of the elastic equations,” Prikl. Mat. Mekh., 26, No. 4, 668–686 (1962).

    Google Scholar 

  42. A. V. Gondlyakh, “Iterative analytical theory of deformation of multilayered shells,” in: Strength of Materials and Structural Theory [in Russian], Issue 53, Budivel'nyk, Kiev (1988), pp. 33–37.

    Google Scholar 

  43. O. V. Gorik, “A nonclassical iterative model of the stress-strain state of composite beams,” Dop. NANU, No. 10, 45–53 (1999).

    Google Scholar 

  44. É. I. Grigolyuk, “The equations of sandwich shells with a light filler,” Izv. AN SSSR, Otd. Tekhn. Nauk, No. 1, 26–34 (1958).

    Google Scholar 

  45. É. I. Grigolyuk and F. A. Kogan, “The present status of the theory of multilayered shells,” Prikl. Mekh., 8, No. 6, 3–17 (1972).

    Google Scholar 

  46. É. I. Grigolyuk and G. M. Kulikov, Multilayered Reinforced Shells. Pneumatic Design [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  47. É. I. Grigolyuk and I. T. Selezov, “A nonclassical theory of vibrations of rods, plates, and shells,” in: Advances in Science and Engineering [in Russian], Vol. 5, Nauka, Moscow (1972).

    Google Scholar 

  48. É. I. Grigolyuk and P. P. Chulkov, “Designing sandwich plates with a rigid filler,” Izv. AN SSSR, Otd. Tekhn. Nauk, No. 1, 77–84 (1957).

    Google Scholar 

  49. É. I. Grigolyuk and P. P. Chulkov, “The nonlinear equations of multilayered shallow shells of regular structure,” Dokl. AN SSSR, Mekh. Tverd. Tela, No. 1, 163–169 (1967).

    Google Scholar 

  50. É. I. Grigolyuk and P. P. Chulkov, Stability and Vibrations of Sandwich Shells [in Russian], Mashinostroenie, Moscow (1973).

    Google Scholar 

  51. Ya. M. Grigorenko, Isotropic and Anisotropic Laminated Shells of Revolution of Variable Rigidity [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  52. Ya. M. Grigorenko and A. T. Vasilenko, “Allowing for the thickness heterogeneity of transverse shear strains in laminated shells,” Prikl. Mekh., 13, No. 10, 36–42 (1977).

    Google Scholar 

  53. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Variable Rigidity, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  54. Ya. M. Grigorenko and A. T. Vasilenko, Static Problems of Anisotropic Inhomogeneous Shells [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  55. Ya. M. Grigorenko, A. T. Vasilenko, and G. P. Golub, Statics of Anisotropic Shells with Finite Shear Rigidity [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  56. Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova, Statics of Anisotropic Thick-Walled Shells [in Russian], Vyshcha Shkola, Kiev (1985).

    Google Scholar 

  57. Ya. M. Grigorenko and S. S. Kokoshin, “Mixed FEM stress-strain analysis of laminated anisotropic shells,” Prikl. Mekh., 18, No. 2, 3–6 (1982).

    Google Scholar 

  58. Ya. M. Grigorenko and N. N. Kryukov, Numerical Solution of Static Problems for Flexible Laminated Shells with Variable Parameters [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  59. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  60. A. N. Guz, I. Yu. Babich, B. L. Pelekh, and G. A. Teters, “On the application domain of applied theories in stability problems for uniaxially compressed rods and plates with low shear rigidity,” Mekh. Polim., No. 6, 1124–1126 (1969).

    Google Scholar 

  61. A. N. Guz, Ya. M. Grigorenko, I. Yu. Babich et al., Mechanics of Structural Elements, Vol. 2 of the three-volume series Mechanics of Composites and Structural Elements [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  62. A. N. Guz, “On an approximate method for determination of the stress concentration near curvilinear openings in shells,” Prikl. Mekh., 8, No. 6, 605–612 (1962).

    Google Scholar 

  63. V. I. Gulyaev, “Application of Vekua's theory to the solution of nonclassical problems of shell theory,” in: Proc. 1st All-Union School on Theoretical and Numerical Design Methods for Shells and Plates [in Russian], Tbilisi (1975), pp. 321–351.

  64. V. I. Gulyaev, V. A. Bazhenov, and P. P. Lizunov, Nonclassical Shell Theory and Its Engineering Applications [in Russian], Izd. L'vovskogo Univ., L'vov (1978).

    Google Scholar 

  65. A. G. Gurtovoi, “High-accuracy modeling of the deformation of laminated structures,” Mekh. Komp. Mater., 35, No. 1, 13–28 (1999).

    Google Scholar 

  66. O. N. Demchuk, “Comparison of approximate refined and exact three-dimensional solutions of the thermoelastic problem for laminated anisotropic plates,” Mekh. Komp. Mater., 31, No. 2, 216–226 (1995).

    Google Scholar 

  67. A. A. Dudchenko, S. A. Lurie, and I. F. Obraztsov, “Anisotropic multilayered plates and shells,” VINITI, Itogi Nauki Tekhn., Ser. Mekh. Tverd. Deform. Tela, 15, 3–68 (1983).

    Google Scholar 

  68. S. Yu. Eremenko, Natural Vibrations and Dynamics of Composites and Structures [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  69. S. N. Kan and Yu. I. Kaplan, “Designing inhomogeneous cylindrical shells with transverse shear and pressure of the fibers,” Prikl. Mekh., 15, No. 1, 34–42 (1979).

    Google Scholar 

  70. B. Ya. Kantor, Nonlinear Problems of the Theory of Inhomogeneous Shallow Shells [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  71. B. Ya. Kantor, “The continuous approach to the analysis of shells consisting of many unsoldered layers,” Dokl. AN USSR, Ser. A, No. 10, 30–33 (1984).

    Google Scholar 

  72. B. Ya. Kantor, Contact Problems of the Nonlinear Theory of Shells of Revolution [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  73. N. A. Kil'chevskii, Fundamentals of the Analytical Mechanics of Shells [in Russian], Izd. AN USSR, Kiev (1972).

    Google Scholar 

  74. V. N. Kobelev, L. M. Kovarskii, and S. I. Timofeev, Designing Sandwich Structures [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  75. V. I. Korolev, Laminated Anisotropic Plates and Shells Made of Reinforced Plastic [in Russian], Mashinostroenie, Moscow (1965).

    Google Scholar 

  76. V. I. Korolev, Elastoplastic Deformations of Shells [in Russian], Mashinostroenie, Moscow (1971).

    Google Scholar 

  77. L. M. Kurshin, “Review of studies on sandwich plates and shells,” in: Designing Spatial Structures [in Russian], Gos. Izd. Lit. Stroit. Arkhitekt. Stroit. Mater., Issue 7, (1962), pp. 163–192.

    Google Scholar 

  78. S. G. Lekhnitskii, Anisotropic Plates, Izd. Tekhn.-Teor. Lit., Moscow (1957).

    Google Scholar 

  79. B. M. Lisitsyn, “On one method for solution of elastic problems,” Prikl. Mekh., 3, No. 4, 35–43 (1967).

    Google Scholar 

  80. B. M. Lisitsyn and N. M. Ruban, “On one approach to the solution of refined problems on bending of multilayered plates,” in: Strength of Materials and Structural Theory [in Russian], Issue 32, Budivel'nyk, Kiev (1978), pp. 77–80.

    Google Scholar 

  81. A. I. Lurie, Spatial Elastic Problems [in Russian], Gostekhizdat, Moscow (1955).

    Google Scholar 

  82. A. K. Malmeister, V. P. Tamusz, and G. A. Teters, Strength of Polymeric and Composite Materials [in Russian], Zinatne, Riga (1980).

    Google Scholar 

  83. A. V. Marchuk, “Generalization of the discrete and continuous structural approaches to the mathematical model of laminated plates and bodies,” Mekh. Komp. Mater., 32, No. 3, 377–387 (1996).

    Google Scholar 

  84. A. V. Marchuk, “Three-dimensional analytical solution for laminated plates with slipping layers,” Prikl. Mekh., 33, No. 9, 10–14 (1997).

    Google Scholar 

  85. A. M. Guz, Mechanics of Composites [in Russian], Vols. 1-10 of the 12-volume series, Naukova Dumka, Kiev (1993-2000).

    Google Scholar 

  86. V. N. Moskalenko, “On natural vibrations of sandwich plates,” Izv. AN SSSR, Otd. Tekhn. Nauk, Mekh. Mschinostr., No. 4, 145–149 (1962).

    Google Scholar 

  87. Kh. M. Mushtari, “The theory of bending of medium-thickness plates,” Izv. AN SSSR, Otd. Tekhn. Nauk, Mekh. Mashinostr., No. 2, 107–113 (1959).

    Google Scholar 

  88. Kh. M. Mushtari and I. G. Teregulov, “The theory of medium-thickness shells revisited,” Dokl. AN SSSR, 128, No. 6, 1144–1148 (1959).

    Google Scholar 

  89. Yu. N. Nemish, Elements of the Mechanics of Piecewise-Homogeneous Bodies with Noncanonical Interfaces [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  90. Yu. N. Nemish, “Development of analytical methods in three-dimensional problems of the statics of anisotropic bodies,” Int. Appl. Mech., 36, No. 2, 135–173 (2000).

    Google Scholar 

  91. V. S. Nikishin and G. S. Shapiro, Elastic Problems for Multilayered Media [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  92. É. S. Osternik, “Anisotropic laminated plates of medium thickness,” Izv. AN Arm. SSR, Mekh., 20, No. 5, 48–57 (1967).

    Google Scholar 

  93. V. N. Paimushin, “A refined iterative nonlinear theory of thin elastic shells,” Prikl. Mat. Mekh., 54, No. 1, 86–92 (1990).

    Google Scholar 

  94. B. L. Pelekh, The Theory of Shells with Finite Shear Rigidity [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  95. V. G. Piskunov, “On one version of the nonclassical theory of multilayered shallow shells and plates,” Prikl. Mekh., 15, No. 11, 76–81 (1979).

    Google Scholar 

  96. V. G. Piskunov, “Modeling physicomechanical processes in laminated systems,” in: Mechanics of Inhomogeneous Structures [in Russian], Vol. 1, Lvov (1987), pp. 211–312.

    Google Scholar 

  97. V. G. Piskunov, A. V. Burygina, and A. A. Rasskazov, “Shear effects of the stress state in transversally isotropic plates,” Probl. Prochn., “Report 1. Vortex effect,” No. 1 (1998), pp. 56-62, “Report 2. Potential effect,” No. 1 (1998), pp. 63-71.

  98. V. G. Piskunov and V. E. Verizhenko, Linear and Nonlinear Problems for Laminated Structures [in Russian], Budivel'nyk, Kiev (1986).

    Google Scholar 

  99. V. G. Piskunov, A. G. Gurtovoi, and V. S. Sipetov, “Refinement of the theory of anisotropic plates,” Prikl. Mekh., 20, No. 5, 82–87 (1984).

    Google Scholar 

  100. V. G. Piskunov and A. V. Marchuk, “Construction of a spatial mathematical model for multilayered orthotropic plates,” Probl. Prochn., No. 12, 51–67 (1994).

    Google Scholar 

  101. V. G. Piskunov and V. K. Prisyazhnyuk, “A nonclassical model of multilayered orthotropic composite shells for solution of dynamic problems,” Dop. AN URSR, Ser. A, No. 4, 43–46 (1986).

    Google Scholar 

  102. V. G. Piskunov and A. O. Rasskazov, “Stress-strain analysis of shallow shells and plates based on the shear theory of the second-order approximation,” Prikl. Mekh., 34, No. 8, 103–110 (1998).

    Google Scholar 

  103. V. G. Piskunov and A. O. Rasskazov, “Refined theories of multilayered composite shells and plates,” in: Proc. 6th Nat. Congr. on Theoretical and Applied Mechanics (Varna, Bulgaria) [in Russian], Book 4, VI (1989), pp. 245–254.

    Google Scholar 

  104. V. G. Piskunov, V. S. Sipetov, and Sh. Sh. Tuimetov, “Bending of a thick transversally isotropic plate under a transversal load,” Prikl. Mekh., 23, No. 11, 21–26 (1987).

    Google Scholar 

  105. V. G. Piskunov, V. S. Sipetov, and Sh. Sh. Tuimetov, “Solution of three-dimensional static problems for laminated orthotropic plates,” Prikl. Mekh., 26, No. 2, 41–49 (1990).

    Google Scholar 

  106. V. G. Piskunov, Yu. M. Fedorenko, and I. M. Didychenko, “Dynamics of inelastic laminated composite shells,” Mekh. Komp. Mater., 31, No. 1, 72–80 (1995).

    Google Scholar 

  107. A. V. Plekhanov, “On construction of the theory of bending of multilayered medium-thickness plates,” in: Strength of Materials and Structural Theory [in Russian], Issue 31, Budivel'nyk, Kiev (1977), pp. 67–72.

    Google Scholar 

  108. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  109. A. K. Privarnikov, Solution of Boundary-Value Elastic Problems for Multilayered Foundations [in Russian], Izd. DGU, Dnepropetrovsk (1976).

    Google Scholar 

  110. V. K. Prisyazhnyuk and I. B. Zaivelev, “Solution of a plane elastic problem for a multilayered composite,” Mekh. Komp. Mater., 27, No. 2, 206–214 (1991).

    Google Scholar 

  111. A. P. Prusakov, “The governing equations of sandwich plates with a light filler,” Prikl. Mat. Mekh., 11, No. 1, 27–36 (1951).

    Google Scholar 

  112. A. P. Prusakov, “Nonlinear bending equations for multilayered shells,” Prikl. Mekh., 7, No. 3, 3–8 (1971).

    Google Scholar 

  113. A. P. Prusakov, “On construction of a bending theory for plates of medium thickness by the energy-asymptotic method,” Prikl. Mekh., 11, No. 10, 44–51 (1975).

    Google Scholar 

  114. A. P. Prusakov, V. D. Bondarenko, and V. A. Prusakov, Bending of Simply Supported Asymmetric Sandwich Plates under a Transverse Sinusoidal Load (Exact Solution) [in Russian], Manuscript No. 2366-UK deposited at UkrNIINTI 11.26.86, Dnepropetrovsk (1986).

  115. A. P. Prusakov, “Constructing boundary layers for a shallow shell by the energy-asymptotic method,” Int. Appl. Mech., 36, No. 2, 234–240 (2000).

    Google Scholar 

  116. R. M. Rappoport, “The Boussinesq problem for a laminated elastic half-space,” in: Tr. Leningradskogo Politekhn. Inst., Issue 5, Leningrad (1948), pp. 3–18.

    Google Scholar 

  117. A. A. Rasskazov, “The stress-strain state of an anisotropic plate under cylindrical bending,” Int. Appl. Mech., 35, No. 5, 522–529 (1999).

    Google Scholar 

  118. A. O. Rasskazov, “The theory of multilayered orthotropic shallow shells,” Prikl. Mekh., 12, No. 11, 50–56 (1976).

    Google Scholar 

  119. A. O. Rasskazov, “The theory of vibrations of multilayered orthotropic shells,” Prikl. Mekh., 13, No. 8, 23–29 (1977).

    Google Scholar 

  120. A. O. Rasskazov, “On stability of multilayered orthotropic shells,” Prikl. Mekh., 14, No. 2, 62–66 (1978).

    Google Scholar 

  121. A. O. Rasskazov, “Finite-element analysis of a multilayered orthotropic shallow shell,” Prikl. Mekh., 14, No. 8, 51–57 (1978).

    Google Scholar 

  122. A. O. Rasskazov and A. V. Burygina, “Refinement of the shear theory of laminated orthotropic shallow shells,” Prikl. Mekh., 24, No. 4, 31–37 (1988).

    Google Scholar 

  123. A. O. Rasskazov and I. I. Sokolovskaya, “Experimental static and dynamic studies of multilayered plates,” Prikl. Mekh., 17, No. 2, 65–70 (1981).

    Google Scholar 

  124. A. O. Rasskazov, I. I. Sokolovskaya, and L. B. Kotova, “Bending of round multilayered plates,” Probl. Prochn., No. 1, 95–99 (1981).

    Google Scholar 

  125. A. O. Rasskazov, I. I. Sokolovskaya, and N. A. Shul'ga, “The equilibrium equations for multilayered orthotropic shallow shells,” Prikl. Mekh., 16, No. 5, 45–50 (1980).

    Google Scholar 

  126. A. O. Rasskazov, I. I. Sokolovskaya, and N. A. Shul'ga, “Comparative analysis of some shear models in equilibrium and vibration problems for multilayered plates,” Prikl. Mekh., 19, No. 7, 90–96 (1983).

    Google Scholar 

  127. A. O. Rasskazov, I. I. Sokolovskaya, and N. A. Shul'ga, Theory and Analysis of Laminated Orthotropic Plates and Shells [in Russian], Vyshcha Shkola, Kiev (1986).

    Google Scholar 

  128. A. O. Rasskazov, “Development of an applied theory and methods for designing laminated orthotropic shells and plates,” Visn. Transp. Akad. Ukr. Ukr. Transp. Univ., No. 1, 110–116 (1997).

    Google Scholar 

  129. V. G. Piskunov, V. E. Verizhenko, V. K. Prisyazhnyuk, V. S. Sipetov, and V. S. Karpilovskii, Finite-Element Analysis of Inhomogeneous Shells and Plates [in Russian], Vyshcha Shkola, Kiev (1987).

    Google Scholar 

  130. R. B. Rikards, The Finite-Element Method in the Theory of Shells and Plates [in Russian], Zinatne, Riga (1988).

    Google Scholar 

  131. R. B. Rikards and G. A. Teters, Stability of Composite Shells [in Russian], Zinatne, Riga (1974).

    Google Scholar 

  132. A. F. Ryabov and A. O. Rasskazov, “Bending of thick plates inhomogeneous across the thickness,” Prikl. Mekh., 18, No. 3, 55–59 (1982).

    Google Scholar 

  133. O. F. Ryabov, Designing Multilayered Shells [in Ukrainian], Budivel'nyk, Kiev (1968).

    Google Scholar 

  134. V. S. Sarkisyan, Some Problems of the Mathematical Elastic Theory of Anisotropic Body [in Russian], Izd. Yerevanskogo Gos. Univ., Yerevan (1976).

    Google Scholar 

  135. A. S. Sakharov, “Moment finite-element scheme including rigid displacements,” in: Strength of Materials and Structural Theory [in Russian], Issue 24, Budivel'nyk, Kiev (1974), pp. 147–156.

    Google Scholar 

  136. A. S. Sakharov, A. L. Kozak, A. V. Gondlyakh, and S. L. Mel'nikov, “A mathematical deformation model for multilayered composite shell systems,” in: Strength of Materials and Structural Theory [in Russian], Issue 44, Budivel'nyk, Kiev (1984), pp. 13–16.

    Google Scholar 

  137. V. S. Sipetov, “Refined analysis of the behavior of laminated composite structures under thermal and static actions,” Mekh. Komp. Mater., No. 1, 142–149 (1989).

    Google Scholar 

  138. V. F. Snigirev, “FEM relations for stress analysis of sandwich plates with a light filler,” in: Research on the Theory of Plates and Shells [in Russian], Izd. Kazanskogo Univ., Kazan (1979), pp. 59–67.

    Google Scholar 

  139. Yu. N. Tamurov, “A generalized theory of sandwich shallow shells that accounts for the reduction of a physically nonlinear filler,” Prikl. Mekh., 26, No. 12, 39–45 (1990).

    Google Scholar 

  140. A. G. Teregulov, “The theory of multilayered anisotropic shells revisited,” in: Research on the Theory of Plates and Shells [in Russian], Issues 6-7, Izd. Kazanskogo Univ., Kazan (1970), pp. 762–767.

    Google Scholar 

  141. I. Yu. Khoma, The Generalized Theory of Anisotropic Shells [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  142. L. P. Khoroshun, “On the derivation of the equations of laminated plates and shells,” Prikl. Mekh., 14, No. 10, 3–21 (1978).

    Google Scholar 

  143. L. P. Khoroshun, S. V. Kozlov, Yu. A. Ivanov, and I. K. Koshevoi, The Generalized Theory of Plates and Shells Inhomogeneous across the Thickness [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  144. I. A. Tsurpal and N. G. Tamurov, Designing Multiply Connected Laminated and Nonlinearly Elastic Plates and Shells [in Russian], Vyshcha Shkola, Kiev (1977).

    Google Scholar 

  145. V. K. Chibiryakov, “On one version of the equations of cylindrical bending of nonthin plates,” in: Strength of Materials and Structural Theory [in Russian], Issue 3, Budivel'nyk, Kiev (1977), pp. 59–67.

    Google Scholar 

  146. P. P. Chulkov, “The general theory of laminated shells,” Dokl. AN SSSR, Mekh. Tverd. Tela, No. 6, 167–170 (1967).

    Google Scholar 

  147. V. I. Shvabyuk, “Allowing for the compressibility of the normal in contact problems for transversally isotropic plates,” Prikl. Mekh., 16, No. 4, 71–77 (1980).

    Google Scholar 

  148. N. A. Shul'ga, Fundamentals of the Mechanics of Periodic Laminated Media [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  149. N. A. Shul'ga, G. A. Krivov, Yu. M. Fedorenko et al., Modeling and Designing Inhomogeneous Structural Elements [in Russian], Tekhnika, Kiev (1996).

    Google Scholar 

  150. S. Adali, E. B. Summers, and V. E. Verijenko, “Optimization of laminated cylindrical pressure vessels under strength criterion,” Compos. Struct., 25, 305–312 (1993).

    Google Scholar 

  151. I. Yu. Babich, A. N. Guz, and V. N. Chekhov, “The three-dimensional theory of stability of fibrous and laminated materials,” Int. Appl. Mech., 37, No. 9, 1103–1141 (2001).

    Google Scholar 

  152. A. E. Bogdanovich and P. L. Sierakowski, “Composite materials and structures: Science, technology and applications. A compendium of books, review papers, and other sources of information,” Appl. Mech. Rev., 52, No. 12, 351–366 (1999).

    Google Scholar 

  153. D. M. Burmister, “The general theory of stresses and displacements in layered system,” J. Appl. Phys., 16, 51–80 (1945).

    Google Scholar 

  154. L. Librescu and T. Hause, “Recent developments in the modeling and behavior of advanced sandwich constructions: a survey,” Comp. Struct., 48, 1–17 (2000).

    Google Scholar 

  155. A. V. Marchuk and V. G. Piskunov, “Solution of the problem on the dynamic deformation of laminated flat structures,” Int. Appl. Mech., 36, No. 4, 526–531 (2000).

    Google Scholar 

  156. P. M. Naghdi, “On the theory of thin elastic shells,” Quart. Appl. Math., 14, No. 4, 369–380 (1957).

    Google Scholar 

  157. A. K. Noor and W. S. Burton, “Assessment of shear deformation theories for multilayered composite plates,” Appl. Mech. Rev., 42, No. 1, 1–13 (1989).

    Google Scholar 

  158. A. K. Noor and W. S. Burton, “Assessment of computational models for multilayered composite shells,” Appl. Mech. Rev., 43, No. 4, 67–97 (1990).

    Google Scholar 

  159. A. K. Noor and W. S. Burton, “Three-dimensional solutions for antisymmetrically laminated anisotropic plates,” ASME J. Appl. Mech., 57, 182–187 (1990).

    Google Scholar 

  160. A. K. Noor, W. S. Burton, and C. W. Bert, “Computational models for sandwich panels and shells,” Appl. Mech. Rev., 9, No. 3, 155–199 (1996).

    Google Scholar 

  161. N. J. Pagano, “Exact solutions for composite laminates in cylindrical bending,” J. Comp. Mater., No. 3, 398–411 (1969).

    Google Scholar 

  162. N. J. Pagano, “Exact solutions for rectangular bidirectional composite sandwich plates,” J. Comp. Mater., No. 4, 20–34 (1979).

    Google Scholar 

  163. N. J. Pagano and S. J. Hatfields, “Elastic behavior of multilayered bidirectional composites,” AIAA J., 10, No. 7, 931–933 (1972).

    Google Scholar 

  164. V. G. Piskunov, A. V. Goryk, A. L. Lyakhov, and V. N. Cherednikov, “High-order model of the stress-strain state of composite bars and its implementation by computer algebra,” Comp. Struct., 48, 169–176 (2000).

    Google Scholar 

  165. V. G. Piskunov, V. E. Verijenko, S. Adali, and P. Y. Tabakov, “Transverse shear and normal deformation higher-order theory for the solution of dynamic problems of laminated plates and shells,” Int. J. Solid. Struct., 31, No. 24, 3345–3374 (1994).

    Google Scholar 

  166. A. O. Rasskazov, V. M. Trach, and V. N. Gupalyuk, “Stability of multilayered shells of revolution with allowance for geometric nonlinearity of the subcritical state,” Int. Appl. Mech., 35, No. 6, 589–594 (1999).

    Google Scholar 

  167. J. N. Reddy, “A review of refined theories of laminated composite plates,” Shock Vibr. Dig., 22, 3–17 (1990).

    Google Scholar 

  168. J. N. Reddy, “On the generalization of displacement-based laminated theories,” Appl. Mech. Rev., 42, No. 11, pt. 2, S213–S222 (1993).

    Google Scholar 

  169. J. N. Reddy, “An evaluation of equivalent single-layer and layer-wise theories of composite laminates,” Comp. Struct., 25, 21–35 (1993).

    Google Scholar 

  170. J. N. Reddy and D. H. Robbins, “Theories and computational models for composite laminates,” Appl. Mech. Rev., 47, No. 6, pt. 1, 21–35 (1994).

    Google Scholar 

  171. E. Reissner, “On the theory of bending of elastic plates,” J. Math. Phys., 33, 184–191 (1944).

    Google Scholar 

  172. E. Reissner, “Finite deflections of sandwich plates,” J. Aero. Sci., 15, No. 17, 17–23 (1948).

    Google Scholar 

  173. E. Reissner, “A consistent treatment of transverse shear deformations in laminated anisotropic plates,” AIAA J., 10, No. 5, 716–718 (1972).

    Google Scholar 

  174. M. Savoia and J. N. Reddy, “A variational approach to three-dimensional elasticity solutions of laminated composite plates,” ASME J. Appl. Mech., 59, 166–175 (1992).

    Google Scholar 

  175. S. Srinivas, A. K. Rao, and C. V. Joga Rao, “Flexure of simple supported thick homogeneous and laminated rectangular plates,” Z. Andew. Math. Mech., 49, 449–458 (1969).

    Google Scholar 

  176. K. Stamm and H. Witte, Sandwichkonstruktionen, Springer, Vienna-New York (1974).

    Google Scholar 

  177. S. P. Timoshenko, “On the correction for shear of the differential equation for transverse vibrations of prismatic bars,” Phil. M. J. Sci., Ser. 6, 41, No. 245, 744–746 (1921).

    Google Scholar 

  178. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York (1970).

    Google Scholar 

  179. V. V. Vasiliev, “Modern conceptions of plate theory,” Comp. Struct., 48, 39–48 (2000).

    Google Scholar 

  180. V. E. Verijenko, “Geometrically nonlinear higher order theory of laminated plates and shells with shear and normal deformation,” Comp. Struct., 29, 161–179 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piskunov, V.G., Rasskazov, A.O. Evolution of the Theory of Laminated Plates and Shells. International Applied Mechanics 38, 135–166 (2002). https://doi.org/10.1023/A:1015756726070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015756726070

Keywords

Navigation