Advertisement

Surveys in Geophysics

, Volume 22, Issue 5–6, pp 581–588 | Cite as

Normal Point Algorithm For Reduction Of Two Colour Slr Observations

  • Stefan Riepl
  • Wolfgang Schlüter
Article

Abstract

Two colour laser ranging to artificial satellites is an attractivetechnique, which is capable to provide refraction corrected ranges without the need of an atmospheric model by measuring the dispersive delay of laser pulses of different wavelength. Although the required accuracy of the detection scheme is stringent, the technique has matured so far, that routine two colour observationsbecame feasible.The present paper describes a normal point procedure reducing two colour laser range observations with respect to the dispersive delay,exploiting the knowledge of satellite response signatures in conjunction with detector characteristics and the appropriate center of mass correction models.Moreover the dispersion model of the atmosphere is briefly reviewed, paying attention to the wavelength domains provided by modern twocolour ranging lasers, e.g., the Ti:SAP laser.Preliminary data is presented and compared to both, normal point data reduced with a standard procedure and zenith path equivalent meteorological parameters.

atmosphere dispersion satellite laser ranging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrel, H. and Sears, J.E.: 1939, The refraction and dispersion of air for the visible spectrum, Phil. Trans. Royal Soc. London, Bd. A238, 6–62.Google Scholar
  2. Edlen, B.: 1966, The refractive index of air, Metrologia 2, 71–80.Google Scholar
  3. Fitzmaurice, M.W. et al.: 1977, Prelaunch Testing of the Laser Geodynamic Satellite (LAGEOS), NASA Technical Paper 1062.Google Scholar
  4. Greene, B.A. and Herring, T.A.: 1986, Multiple Wavelength Laser Ranging, Sixth International Workshop on Laser Ranging Instrumentation, Antibes.Google Scholar
  5. Lucchini, C.: 1995, Telemetrie laser deux couleurs, Ph.D. thesis, University of Nice, France.Google Scholar
  6. Marini, J.W. and Murray, C.W., Jr: 1973, Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees, NASA–TM–X-70555.Google Scholar
  7. Owens, J.C.: 1967, Optical refractive index of air: Dependence on pressure, temperature and composition, Appl. Opt. 6, 51–59.Google Scholar
  8. Riepl, S. and Schreiber, U.: 1997, WLRS streak camera experiment, in U. Schreiber and C. Werner (eds.), Laser Radar Ranging and Atmospheric Lidar Techniques, Proc. SPIE 3218.Google Scholar
  9. Schreiber, U., Maier, W., and Riepl, S.: 1994, Measuring atmospheric dispersion employing avalanche photodiodes, in C. Werner (ed.), Lidar Techiques for Remote Sensing, Proc. SPIE 2310, p. 2.Google Scholar
  10. Zagwodzki, T.W., McGarry, J.F., and Degnan, J.J.: 1997, Two color SLR experiments at the GSFC 1.2-m telescope, in U. Schreiber and C. Werner (eds.), Laser Radar Ranging and Atmospheric Lidar Techniques, Proc. SPIE 3218.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Stefan Riepl
    • 1
  • Wolfgang Schlüter
    • 1
  1. 1.Bundesamt für Kartographie und GeodäsieKötztingGermany

Personalised recommendations