Advertisement

Surveys in Geophysics

, Volume 22, Issue 5–6, pp 597–602 | Cite as

Slr Contributions To Fundamental Physics

  • Kenneth Nordtvedt
Article

Abstract

The gravitomagnetic interaction of general relativity must be incorporated into the Earth gravity model in order to obtain an unbiased measure of Earth's multipoles, and the strength of this relativistic interaction can also measured from SLR data by being introduced as a fit-for parameter in the total model. SLR measurements of the perigee precession rates of LAGEOS (and similar type) satellites are also a precise way to search for Yukawa-like interactions of range comparable to orbit sizes; and preferred frame effects in gravitational theory can also be sought. SLR's correlated measurements of particular parameters which appear in the models used to fit both SLR and LLR data can be brought into the LLR fits, achieving something like a ‘grand fit’ of those data sets; this should contribute toward substantial improvement in the precision with which scientifically interesting parameters are determined in LLR and other interplanetary ranging missions.

Earth rotation fundamental physics gravitomagnetism LLR SLR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciufolini, I. et al.: 1997, Test of Lense–Thirring orbital shift due to spin, Class. Quantum Grav. 14, 2701.Google Scholar
  2. Ciufolini, I. et al.: 1998, Test of general relativity and measurement of the Lense–Thirring effect with two Earth satellites, Science 279, 2100.Google Scholar
  3. Lense, J. and Thirring, H.: 1918, Uber den Einfluss der Eigenrotation der Zentralkorper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Physik. Zeitschr. 19, 156.Google Scholar
  4. Mueller, J. and Nordtvedt, K.: 1998, Lunar laser ranging and the equivalence principle signal, Phys. Rev. 58(6), 2001.Google Scholar
  5. Nordtvedt, K.: 1999a, 30 years of lunar laser ranging and the gravitational interaction, Class. Quantum Grav. 16, A101.Google Scholar
  6. Nordtvedt, K.: 1999b, Gravitational preferred frames and Earth satellite orbits, Class. Quantum Grav. 16, L19.Google Scholar
  7. Nordtvedt, K.: 2000, Improving gravity theory tests with solar system 'grand fits', Phys. Rev. D61.Google Scholar
  8. Williams, J.G., Newhall, X.X., and Dickey, J.O.: 1996, Relativity parameters from lunar laser ranging, Phys. Rev. 53(12), 6730.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kenneth Nordtvedt
    • 1
  1. 1.Northwest AnalysisBozemanUSA

Personalised recommendations