Advertisement

Cluster Computing

, Volume 5, Issue 3, pp 247–255 | Cite as

NAS Grid Benchmarks: A Tool for Grid Space Exploration

  • Michael Frumkin
  • Rob F. Van der Wijngaart
Article

Abstract

We present a benchmark suite for computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB specifies several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the suite. The implementor has the freedom to choose any Grid environment. We describe a reference implementation in Java, and present some scenarios for using NGB.

benchmarking NAS computational grids scientific computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.H. Bailey, J. Barton, T. Lasinski and H. Simon (eds.), The NAS parallel benchmarks, NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA (1991).Google Scholar
  2. [2]
    D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart, A.C. Woo and M. Yarrow, The NAS parallel benchmarks 2.0, NAS Technical Report NAS-95-020, NASA Ames Research Center, Moffett Field, CA (1995).Google Scholar
  3. [3]
    R. Ben-Naten, CORBA: A Guide to Common Object Request Broker Architecture (McGraw-Hill, New York, 1995).Google Scholar
  4. [4]
    S.J. Chapin, WARMstones: Benchmarking Wide-Area Resource Management Schedulers, Draft white paper, Syracuse University; http:// www.hpdc.syr.edu/chapin/currentproj.html.Google Scholar
  5. [5]
    Codine 5.2 Manual, Revision A (Microsystems, Inc., Palo Alto, CA, 2000); http://www.sun.com/gridware.Google Scholar
  6. [6]
    M. Frumkin, H. Jin and J. Yan, Implementation of NAS parallel benchmarks in high performance Fortran, in: Proc. International Parallel Processing Symposium (1999); http://ipdps.eece.unm.edu.Google Scholar
  7. [7]
    M. Frumkin, M. Schultz, H. Jin and J. Yan, Implementation of NAS parallel benchmarks in Java, Presented at a Poster session at ACM 2000 Java Grande Conference (2000).Google Scholar
  8. [8]
    I. Foster and C. Kesselman, Globus: A metacomputing infrastructure toolkit, Int. J. Supercomputer Applications 11(2) (1997) 115–128; http://www.globus.org.Google Scholar
  9. [9]
    Globus Heartbeat Monitor; http://www.globus.org/hbm/.Google Scholar
  10. [10]
    I. Foster and C. Kesselman (eds.), The Grid. Blueprint for a New Computing Infrastructure (Morgan Kaufmann, San Francisco, CA, 1999).Google Scholar
  11. [11]
    C.S. Horstmann and G. Cornell, Core Java 2, Advanced Features, Vol. 2, 4th Ed. (Prentice Hall, 1999); http://java.sun.com/j2se/1.3/docs.Google Scholar
  12. [12]
    H. Jin, M. Frumkin and J. Yan, The OpenMP implementation of NAS parallel benchmarks and its performance, NAS Technical Report NAS-99-011, NASA Ames Research Center, Moffett Field, CA (1999).Google Scholar
  13. [13]
    Legion 1.6, Developer Manual (The Legion Research Group, Dept. Computer Science, University Virginia, Charlottesville, VA, 1999); http://legion.virginia.edu.Google Scholar
  14. [14]
    M. Livny, J. Basney, R. Raman and T. Tannenbaum, Mechanisms for high throughput computing, SPEEDUP Journal 11(1) (1997); http://www.cs.wisc.edu/condor/.Google Scholar
  15. [15]
    NASA Information Power Grid; http://www.nas.nasa.gov/IPG.Google Scholar
  16. [16]
    H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura and A. Chien, TheMicroGrid: A scientific tool for modeling computational grids, in: Proc. Supercomputing 2000, Dallas, TX (2000).Google Scholar
  17. [17]
    A. Takefusa, S. Matsuoka, H. Nakada, K. Aida and U. Nagashima, Overview of a performance evaluation system for Global computing scheduling algorithms, in: Proc. High-Performance and Distributed Computing, Vol. 8 (1999) pp. 97-104.Google Scholar
  18. [18]
    R. Wolski, N.T. Spring and J. Hayes, The Network Weather Service: A distributed resource performance forecasting service for metacomputing, J. Future Generation Computing Systems (1999); UCSD Technical Report Number TR-CS98-599 (1998); http:// nws.npaci.edu/NWS/.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Michael Frumkin
    • 1
  • Rob F. Van der Wijngaart
    • 2
  1. 1.NASA Advanced Supercomputing Division, M/S T27A-2NASA Ames Research CenterMoffett FieldUSA
  2. 2.Computer Sciences Corporation, M/S T27A-1NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations