Advertisement

Surveys in Geophysics

, Volume 22, Issue 5–6, pp 549–559 | Cite as

Improvements In Spaceborne Laser Altimeter Data Geolocation

  • S.B. Luthcke
  • C.C. Carabajal
  • D.D. Rowlands
  • D.E. Pavlis
Article

Abstract

For many science applications of laser altimetry, the preciselocation of the point on the Earth's surface from which the laser energy reflects is required.The laser surface return geolocation is computed from the laser altimeter's range observation in combinationwith precise knowledge of spacecraft position, instrument tracking points referenced to thespacecraft center of mass, spacecraft attitude, laser orientation, observation and attitude data timetags. An approach that simultaneously estimates the geometric and dynamic parameters of the orbit andlaser range measurement model by a combined reduction of both spacecraft tracking and laseraltimeter surface range residuals is applied to produce improved pointing, orbit and range bias solutionsand therefore improved geolocation. The data acquired by the Shuttle Laser Altimeter (SLA)-01 and 02missions constitute a valuable pathfinder data set to test algorithms in preparation for the upcoming VCL(Vegetation Canopy Lidar) and ICESat (Ice, Cloud and Elevation Satellite) missions. Results from apreliminary SLA-01 data analysis are presented along with a brief description of the methodology and itsapplication to future spaceborne missions.

Altimetry geolocation instrument biases laser altimetry laser remote sensing on-orbit calibration techniques orbit determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bufton, J.L., Blair, J.B., Cavanaugh, J., Garvin, J.B., Harding, D., Hopf, D., Kirks, K., Rabine, D., and Walsh, N.: 1995, Shuttle Laser Altimeter (SLA), Proceedings of Shuttle Small Payloads Symposium, NASA CR-3310, Greenbelt, MD, pp. 83–91.Google Scholar
  2. Carabajal, C.C., Harding, D.J., Luthcke, S.B., Fong, W., Rowton, S.C., and Frawley, J.J.,: 1999, Processing of Shuttle Laser Altimeter Range and return pulse data in support of SLA-02, ISPRS Workshop, Mapping Surface Structure and Topography by Airborne and Spaceborne Lasers, November 9–11, La Jolla, CA.Google Scholar
  3. Dubayah, R., Blair, J.B., Bufton, J.L., Clark, D.B., JaJa, J., Knox, R., Luthcke, S.B., Prince, S., and Weishampel, J.: 1997, The Vegetation Canopy Lidar Mission, Land Satellite Information in the Next Decade II: Sources and Applications, American Society for Photogrammetry and Remote Sensing, Bethesda, MD, pp. 100–112. Hofton, M.A., Blair, J.B., Minster, J.-B., Ridgway, J.R., Williams, N.P., Bufton, J.L., and Rabine, D.L.: 2000, An airborne scanning laser altimetry survey of Long Valley, California, Journal of Remote Sensing, in press. Garvin, J., Bufton, J., Blair, J., Harding, D., Luthcke, S., Frawley, J., and Rowlands, D.: 1998, Observations of the Earth's topography from the Shuttle Laser Altimeter (SLA): Laser pulse echorecovery measurements of terrestrial surfaces, Physics and Chemistry of the Earth 23(9–10), 1053–1068. Garvin, J., Bufton, J., Blair, J., Harding, D., Luthcke, S., Frawley, J., and Rowlands, D.: 1998, Observations of the Earth's topography from the Shuttle Laser Altimeter (SLA): Laser-pulse echo-recovery measurements of terrestrial surfaces, Physical Chemistry of the Earth 23(9–10), 1053–1068. Luthcke, S.B., Marshall, J.A., Rowton, S.C., Rachlin, K.E., Cox, C.M., and Williamson, R.G., Enhanced Radiative Force Modeling of the Tracking and Data Relay Satellites, The Journal of the Astronautical Sciences 45(3), 349–370. Luthcke, S.B., Rowlands, D.D., McCarthy, J.J., Pavlis, D.E., and Stoneking, E.: 2000, Spaceborne laser-altimeter-pointing bias calibration from range residual analysis, Journal of Spacecraft and Rockets 37(3). Pavlis, D.E., Moore, D., Luo, S., McCarthy, J.J., and Luthcke, S.B.: 1999, GEODYN Operations Manual, 5 volumes, Raytheon ITSS, Greenbelt, MD. Ray, R.D.: 1999, A global ocean tide model from TOPEX/Poseidon altimetry: GOT99.2, NASA Technical Memorandum, 209478, Goddard Space Flight Center, 58 pp. Rowlands, D.D., Luthcke, S.B., Marshall, J.A., Cox, C.M., Williamson, R.G., and Rowton, S.C.: 1997, Space shuttle precision orbit determination in support of SLA-1 using TDRSS and GPS tracking data, The Journal of the Astronautical Sciences 45(1), 113–129. IMPROVEMENTS IN SPACEBORNE LASER ALTIMETER DATA GEOLOCATION 559 Rowlands, D.D., Pavlis, D.E., Lemoine, F.G., Neumann, G.A., and Luthcke, S.B.: 1999, The Use of Laser Altimetry in the Orbit and Attitude Determination of Mars Global Surveyor, Geophysical Research Letters 26(9), 1191–1194. Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B., Head, J.W., Muhleman, D.O., Pettengill, G.H., Phillips, R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B., and Duxbury, T.C.: 1998, Topography of the Northern Hemisphere of Mars from the Mars Orbiter Laser Altimeter, Science 279, 1686– 1692. Vaughn, C.R., Bufton, J.L., Krabill, W.B., and Rabine, D.: 1996, 'Georeferencing of laser altimeter measurements, International Journal of Remote Sensing 17(11), 2185–2200. Yi, Y.: 1995, Determination of gridded mean sea surface from TOPEX, ERS-1 and GEOSAT altimeter data, The Ohio State University, Report No. 434, Columbus, OH.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S.B. Luthcke
    • 1
  • C.C. Carabajal
    • 2
  • D.D. Rowlands
    • 3
  • D.E. Pavlis
    • 4
  1. 1.Code 926, Space Geodesy BranchNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Space Geodesy Branch, Code 926NVI, Inc. at NASA/GSFCUSA
  3. 3.Code 926, Space Geodesy BranchNASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.GeodynamicsRaytheon ITSSGreenbeltUSA

Personalised recommendations