Skip to main content
Log in

Graph Methodology and Principles of Linear Nonequilibrium Thermodynamics in the Theory of Flow-Injection Analysis

  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

It is shown that chemical, configurational, and informational properties of flow-injection systems can be interrelated with the use of the methodology of the graph theory. The main equation of the theory is derived using a mathematical expression of the transition paths from the analyte to the detection of a product of the analytical reaction. Examples of specific developments are discussed for redox reactions, ligand exchange reactions, and heterogeneous exchange reactions, with due regard to, the hidden peculiarities of their chemical mechanisms that are essential for flow analysis and also for on-line preconcentration by coprecipitation. It is also shown that the conditions obtained in a flow system correspond to the basic postulates of linear nonequilibrium thermodynamics, which provides a basis for a new approach to the theory of flow analysis. An example of a complexation reaction was used for discussing the possibility that a linear interrelation exists between flows and forces in a flow system, which corresponds to the Onsager reciprocal relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Shpigun, L.K., Zh. Anal. Khim., 1990, vol. 45, no. 6, p. 1045.

    Google Scholar 

  2. Flow Injection Analysis: Theoretical Basis,Kolev, S.D., Ed., Singapore: World Sci., 1996.

    Google Scholar 

  3. Trojanowicz, M., Flow Injection Analysis, Instrumentation and Applications, Singapore: World Sci., 1999.

    Google Scholar 

  4. Kolev, S.D., Rios, A., De Castro, M.D.L., and Valcarcel, M., Talanta, 1991, vol. 38, no. 2, p. 125.

    Google Scholar 

  5. Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., and Riba, J., Anal. Chem., 1994, vol. 66, no. 18, p. 2905.

    Google Scholar 

  6. Kolev, S.D., Anal. Chim. Acta, 1980, vol. 229, no. 2, p. 183.

    Google Scholar 

  7. Andreev, V.P. and Kondratieva, T.V., Talanta, 1994, vol. 41, no. 10, p. 1755.

    Google Scholar 

  8. Andreev, V.P. and Khidekel, M.G., Anal. Chim. Acta, 1993, vol. 278, no. 2, p. 307.

    Google Scholar 

  9. Wämann, A. and Hitzmann, B., Chem.-Ing.-Tech., 1993, vol. 65, no. 8, p. 947.

    Google Scholar 

  10. Wu, N., Chen, Y., and Zhao, H., Anal. Lett., 1993, vol. 26, no. 12, p. 2679.

    Google Scholar 

  11. Lee, O., Kester, M.D., and Wade, A.P., ICP Inf. Newsl., 1992, vol. 17, no. 10, p. 655.

    Google Scholar 

  12. Wentzell, P.D., Bowdridge, M.R., Taylor, E.L., and McDonald, C.,Anal. Chim. Acta, 1993, vol. 278, no. 2, p. 293.

    Google Scholar 

  13. Lee, O., Wade, A.P., and Dumont, G.A., Anal. Chem., 1994, vol. 66, no. 24, p. 4507.

    Google Scholar 

  14. Szostek, B. and Trojanowicz, M., Anal. Chim. Acta, 1992, vol. 261, nos. 1- 2, p. 509.

    Google Scholar 

  15. Hernandez, O., Jimenez, A.I., Jimenez, F., and Arias, J.J., Anal. Chim. Acta, 1995, vol. 310, no. 1, p. 53.

    Google Scholar 

  16. Novikov, E.A. and Shpigun, L.K., Zh. Anal. Khim., 1993, vol. 48, no. 8, p. 1326.

    Google Scholar 

  17. Kuznetsov, V.V. and Dong, Z.,D., Zh. Anal. Khim., 1996, vol. 51, no. 9, p. 918.

    Google Scholar 

  18. Kuznetsov, V.V., Ermolenko, Yu.V., and Bykhovskii, M.L., Zh. Anal. Khim., 2000, vol. 55, no. 8, p. 856.

    Google Scholar 

  19. Kuznetsov, V.V., Ermolenko, Yu.V., Novikov, D.V., and Bykhovskii, M.L., Zh. Anal. Khim., 2000, vol. 55, no. 7, p. 702.

    Google Scholar 

  20. Singh, P.P., Indian J. Chem., 1993, vol. 32, no. 11. p. 930.

    Google Scholar 

  21. Sana, M. and Leroy, G., J. Mol. Struct., 1984, vol. 109, nos. 3- 4. THEOCHEM, vol. 18, nos. 3- 4, p. 251.

  22. Yatsimirskii, K.B., Primenenie metoda grafov v khimii (Chemical Application of the Graph Method), Kiev: Naukova Dumka, 1971.

    Google Scholar 

  23. Kuznetsov, V.V., Zh. Anal. Khim., 1987, vol. 42, no. 3, p. 525.

    Google Scholar 

  24. Kult, K., Suchanek, M., and Vrbsky, J., Chem. Listy, 1986, vol. 80, no. 7, p. 691.

    Google Scholar 

  25. Bulatov, M.I. and Lundin, A.B., Termodinamika neravnovesnykh fiziko-khimicheskikh protsessov (Termodynamics of Nonequilibrium Physicochemical Processes), Moscow: Khimiya, 1984.

    Google Scholar 

  26. Nurzhanova, S.B., Ugryumova, L.E., and Terekhov, A.G., Dokl. Akad. Nauk SSSR, 1990, vol. 312, no. 1, p. 143.

    Google Scholar 

  27. Kuznetsov, V.V. and Murashova, M.V., Zh. Anal. Khim., 1996, vol. 51, no. 10, p. 1087.

    Google Scholar 

  28. Kuznetsov, V.V. and Dong, D.Z., Zh. Anal. Khim., 1995, vol. 50, no. 2, p. 136.

    Google Scholar 

  29. Kuznetsov, V.V. and Ermolenko, Yu.V., Zh. Anal. Khim., 2000, vol. 55, no. 5, p. 526.

    Google Scholar 

  30. Yamada, A., Iketake, H., and Okuda, Y., Denki Kagaku Kyokai Gijutsu, Kyoiku Kenkyu Ronbushi, 1995, vol.4, no. 1, p. 59, Available from CA, 1996, vol. 124, no. 8, 104938.

    Google Scholar 

  31. Fang, Z., Flow Injection Separation and Preconcentration, Weinheim: VCH, 1993.

    Google Scholar 

  32. Susanto, J.P., Oshima, M., Motomizu, Sh., et al., Analyst (Cambridge, U.K.), 1995, vol. 120, no. 1, p. 187.

    Google Scholar 

  33. Kuznetsov, V.I. and Akimova, T.G., Kontsentrirovanie aktinoidov (Preconcentration of Actinides), Moscow: Atomizdat, 1968.

    Google Scholar 

  34. Stromberg, A.G. and Semchenko, D.P., Fizicheskaya khimiya (Physical Chemsitry), Moscow: Vysshaya Shkola, 1999, p. 394.

    Google Scholar 

  35. Kuznetsov, V.V., Ermolenko, Yu.V., and Bykhovskii, M.L., Abstracts of Papers, 10-th Russian-Japan Joint Symp. on Analytical Chemistry, Moscow, St. Petersburg, 2000, p. 63. no. 149.

  36. Peusner, L., Concepts in Bioenergetics, Englewood Cliffs (USA): Prentice-Hall, 1974. Translated under the title Osnovy bioenergetiki, Moscow: Mir, 1977, pp. 169, 175.

    Google Scholar 

  37. Gongwei, Z., Zhen, L., and Congxiang, W., Anal. Chim. Acta, 1997, vol. 350, no. 2, p. 359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, V.V. Graph Methodology and Principles of Linear Nonequilibrium Thermodynamics in the Theory of Flow-Injection Analysis. Journal of Analytical Chemistry 57, 388–398 (2002). https://doi.org/10.1023/A:1015401323227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015401323227

Keywords

Navigation