Advertisement

Fuzzy Rule-Based Mobility and Load Management for Self-Organizing Wireless Networks

  • Jörg Habetha
  • Bernhard Walke
Article

Abstract

Mobility management in a cluster-based, multihop ad hoc network is studied. It is shown that the process of clustering the network into groups of stations has similarities to data analysis, in particular, pattern recognition. In data analysis, the term clustering refers to the process of unsupervised learning, which also describes the situation in a mobile ad hoc network.

In this paper, existing data-clustering algorithms are first classified into different categories. Some of the most important types of algorithms are afterwards described, and their applicability to the problem of mobility management in an ad hoc network is studied. It is shown that most of the pattern-recognition algorithms are not suited to the application under consideration.

This is why we have developed a new clustering scheme that incorporates some of the ideas of the data classification schemes. The new clustering scheme is based on a rule-based fuzzy inference engine. The main idea consists of the consideration of dynamic clustering events chosen as a consequence of the fuzzy rules. Four types of clustering events are considered.

The performance of the clustering algorithm has been evaluated by computer simulation.

Ad hoc network clustering mobility management handover 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Gerla and J. Tzu-Chieh Tsai, Multicluster mobile, multimedia radio network, Wireless Networks, Vol. 1, pp. 255–265, Oct. 1995.Google Scholar
  2. 2.
    C. R. Lin and M. Gerla, Adaptive clustering for mobile wireless networks, IEEE J. Select. Areas Commun., Vol. 15, pp. 1265–1275, Sept. 1997.Google Scholar
  3. 3.
    J. Habetha, M. Nadler, and D. Calvo de No, Dynamic clustering with quality of service guarantees and forwarder selection in wireless ad hoc network. In Proc. Asia Pacific Conference on Communications, pp. 31–35, Nov. 2000.Google Scholar
  4. 4.
    J. Habetha, A. Hettich, J. Peetz, and Y. Du, Central controller handover procedure for ETSI-BRAN HiperLAN/2 ad hoc networks and clustering with quality of service guarantees. In IEEE Annual Workshop on Mobile Ad Hoc Networking & Computing (Mobi-HOC), pp. 131–132, Aug. 2000.Google Scholar
  5. 5.
    J. Habetha and M. Nadler, Concept of a wireless centralised multihop ad hoc network. In Proc. European Wireless, (Dresden), Sept. 2000.Google Scholar
  6. 6.
    B. McDonald and T. F. Znati, A mobility-based framework for adaptive clustering in wireless ad hoc networks, IEEE J. Select. Areas Commun., Vol. 17, pp. 1466–1487, Aug. 1999.Google Scholar
  7. 7.
    T. J. Kwon and M. Gerla, Clustering with power control. In Proc. MILCOM, Nov. 1999.Google Scholar
  8. 8.
    J. Habetha and M. Nadler, Outline of a centralised multihop ad hoc wireless network, Computer Networks, Vol. 37, pp. 63–71, 2001.Google Scholar
  9. 9.
    D. A. Baker and A. Ephremides, The architectural organization of a mobile radio network via a distributed algorithm, IEEE Trans. on Commun., Vol. 29, pp. 1694–1701, Nov. 1981.Google Scholar
  10. 10.
    A. Ephremides, J. E. Wieselthier, and D. J. Baker, A design concept for reliable mobile radio networks with frequency hopping signaling, Proc. of the IEEE, Vol. 75, pp. 56–73, Jan. 1987.Google Scholar
  11. 11.
    J. Habetha and J. Wiegert, A comparison of new single-and multiple-transceiver data forwarding mechanisms for multihop ad hoc wireless networks. In Proc. Int. Symposium on Performance Evaluation of Computer and Telecommunication Systems, (Orlando), pp. 436–443, July 2001.Google Scholar
  12. 12.
    B. Walke, N. Esseling, J. Habetha, A. Hettich, A. Kadelka, S. Mangold, and J. Peetz, IP over wireless mobile ATM-Guaranteed wireless QoS by HiperLAN/2, Proc. of the IEEE, Vol. 89, pp. 21–40, Jan. 2001.Google Scholar
  13. 13.
    B. Walke, Mobile Radio Networks, 2nd ed., Wiley & Sons Ltd., Chichester, Sussex, UK, 2001.Google Scholar
  14. 14.
    J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, London, 1981.Google Scholar
  15. 15.
    K. S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974.Google Scholar
  16. 16.
    K. S. Fu, Syntactic Pattern Recognition with Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.Google Scholar
  17. 17.
    L. A. Zadeh, Fuzzy sets, Inform. Control, Vol. 8, pp. 338–353, 1965.Google Scholar
  18. 18.
    D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, London, Toronto, 1980.Google Scholar
  19. 19.
    H.-J. Zimmermann, Fuzzy Set Theory-and Its Applications, 3rd ed. Kluwer, Boston, Dordrecht, London, 1996.Google Scholar
  20. 20.
    J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters, J. Cybernetics, Vol. 3, No. 3, pp. 32–57, 1973.Google Scholar
  21. 21.
    G. H. Ball and D. J. Hall, ISODATA, an iterative method of multivariate analysis and pattern classification, Behavioural Science, Vol. 12, pp. 153–155, 1967.Google Scholar
  22. 22.
    R. Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.Google Scholar
  23. 23.
    F. Höppner, F. Klawonn, and R. Kruse, Fuzzy-Clusteranalyse: Verfahren für die Bilderkennung, Klassifikation und Datenanalyse, Vieweg, Braunschweig, 1996.Google Scholar
  24. 24.
    D. E. Gustafson and W. C. Kessel, Fuzzy clustering with a fuzzy covariance matrix. In Proc. of IEEE CDC (San Diego, California), pp. 761–766, Jan. 1979.Google Scholar
  25. 25.
    I. Gath and A. B. Geva, Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, pp. 773–781, July 1989.Google Scholar
  26. 26.
    J. F. Peters, A. Skowron, Z. Suraj, S. Ramanna, and A. Paryzek, Modeling real-time decision-making systems with rough fuzzy Petri Nets. In Proc. EUFIT'98 (Aachen), pp. 985–989, ELITE Foundation, 1998.Google Scholar
  27. 27.
    L. Minsky, A framework for representing knowledge. In R. Brachman and H. Levesque (eds.), Readings in Knowledge representation Morgan Kaufmann, Los Altos, 1985.Google Scholar
  28. 28.
    L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics, Vol. 16, No. 3, pp. 28–44, 1973.Google Scholar
  29. 29.
    O. Cordon, M. J. del Jesus, and F. Herrera, A proposal on reasoning methods in fuzzy rule-based classification systems, Int. J. on Approximate Reasoning, Vol. 20, No. 1, pp. 21–45, 1999.Google Scholar
  30. 30.
    L. I. Kuncheva, How good are fuzzy if-then classifiers? IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, Vol. 30, pp. 501–509, Aug. 2000.Google Scholar
  31. 31.
    H. Bandemer and W. Näther, Fuzzy Data Analysis, Kluwer, Dordrecht, Boston, London, 1992.Google Scholar
  32. 32.
    A. Joentgen, L. Mikenina, R. Weber, and H.-J. Zimmermann, Dynamic fuzzy data analysis based on similarity between functions, Fuzzy Sets and Systems, Vol. 105, No. 1, pp. 81–90, 1999.Google Scholar
  33. 33.
    L. Mikenina, Dynamic Fuzzy Pattern Recognition. Ph.D. thesis, RWTH Aachen, 1999.Google Scholar
  34. 34.
    S. Mann, Ein Lernverfahren zur Modellierung zeitvarianter Systeme mittels unscharfer Klassifikation. Ph.D. thesis, Technische Hochschule Karl-Marx-Stadt, 1983.Google Scholar
  35. 35.
    B. Dubuisson, An adaptive decision system using pattern recognition, Artificial Intelligence in Real-Time Control, pp. 299–302, 1992.Google Scholar
  36. 36.
    S. Marsili-Libelli, Adaptive fuzzy monitoring and fault detection, Int. J. of Condition Monitoring and Diagnostic Engineering Management (COMADEM), Vol. 1, No. 3, pp. 31–37, 1998.Google Scholar
  37. 37.
    E. H. Mamdani and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Machine Studies, No. 7, pp. 1–13, 1975.Google Scholar
  38. 38.
    M. Junius, Leistungsbewertung intelligenter Handover-Verfahren für zellulare Mobilfunksysteme. Ph.D. thesis, RWTH Aachen, 1995.Google Scholar
  39. 39.
    G. Edwards, A. Kandel, and S. Ravi, Fuzzy handoff algorithms for wireless communication, Fuzzy Sets and Systems, Vol. 110, pp. 379–388, 2000.Google Scholar
  40. 40.
    D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control, 2nd ed., Springer, Berlin, 1996.Google Scholar
  41. 41.
    D. Johnson and D. A. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks. In T. Imielinski and H. Korth (eds.), Mobile Computing Kluwer Academic Publishers, Norwell, Massachusetts, 1996.Google Scholar
  42. 42.
    J. Broch, D. A. Maltz, D. B. Johnson, et al., A performance comparison of multi-hop wireless ad hoc network routing protocols. In Proc. ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM), pp. 85–97, Oct. 1998.Google Scholar
  43. 43.
    S. Das, C. Perkins, and E. M. Royer, Performance comparison of two on-demand routing protocols for ad hoc networks. In Proc. IEEE INFOCOM, Mar. 2000.Google Scholar
  44. 44.
    J. Habetha and D. Calvo de No, Hierarchical time-vector routing for mobile ad hoc networks. In Proc. IEEE International Conference on Communications (ICC), Helsinki, June 2001.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Jörg Habetha
    • 1
  • Bernhard Walke
    • 2
  1. 1.Philips ResearchAachenGermany
  2. 2.Chair of Communication NetworksAachen University of TechnologyAachenGermany

Personalised recommendations