Advertisement

Journal of Polymers and the Environment

, Volume 8, Issue 4, pp 183–195 | Cite as

Aerobic Biodegradation of Polymers in Solid-State Conditions: A Review of Environmental and Physicochemical Parameter Settings in Laboratory Simulations

  • Sophie Grima
  • Véronique Bellon-Maurel
  • Pierre Feuilloley
  • Françoise Silvestre
Article

Abstract

During the last few years, biodegradable polymers have been developed to replace petrochemical polymers. Until now, research devoted to these polymers essentially focused on their biodegradability. There is now a need to bear out their nontoxicity. To verify this, the biodegradation must be carried out in accelerated laboratory tests which allow the metabolites and residues to be recovered. To reproduce the natural conditions (compost, field) as closely as possible, degradation experiments must be run on solid-state substrates. We review studies of aerobic degradation in solid-state substrates. This article focuses in particular on the environmental, physical, and chemical parameters (such as substrate nature, moisture, temperature, C/N ratio, and pH) that influence biodegradation kinetics. This study also aims at finding the solid substrate most adapted to residues and metabolite recovery. The most significant parameters would appear to be the substrate type, moisture content, and temperature. Inert substrates such as vermiculite are well suited to residue extraction. This review also opens the field to new research aimed at optimizing conditions for aerobic solid-state biodegradation and at recovering the metabolites and residues of this degradation process.

Solid-state biodegradation environmental parameters inert substrate moisture pH control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Decriaud-Calmon, V. Bellon-Maurel, and F. Silvestre (1998) Adv. Polym. Sci. 135, 207–226.Google Scholar
  2. 2.
    R. F. Müller, J. Augusta, T. Walter, and H. Widdecke (1994) in Y. Doi and K. Fukuda, (Eds.), Biodegradable plastics and polymers, Elsevier Science BV, Amsterdam, pp. 237–249.Google Scholar
  3. 3.
    M. Van der Zee, L. Sistma, H. Tournois, and D. De Wit (1994) Chemosphere 28, 1757–1771.Google Scholar
  4. 4.
    European Committee for Normalisation (1998) Evaluation of the, Ultimate Aerobic Biodegradability and Disintegration of Packaging Materials Under Controlled Composting Conditions–Method by Analysis of Released Carbon Dioxide TC261/SC4/N42, Brussels, Belgium.Google Scholar
  5. 5.
    Organisation for Economic Cooperation and Development 301B (1992) Guidelines for testing of chemicals, Paris, France.Google Scholar
  6. 6.
    ASTM (1992) D5210-92 Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge, American Society for Testing and Materials, Philadelphia.Google Scholar
  7. 7.
    ASTM (1992) D5209-92 Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge, American Society for Testing and Materials, Philadelphia.Google Scholar
  8. 8.
    U. Pagga, D. B. Beimborn, J. Boelens, and B. De Wilde (1995) Chemosphere 31, 4475–4487.Google Scholar
  9. 9.
    M. Tosin, F. Degli-Innocenti, and C. Bastioli (1998) J. Environ. Polym. Degrad. 6, 79–90.Google Scholar
  10. 10.
    M. Van der Zee (1997) PhD Thesis, Twente.Google Scholar
  11. 11.
    G. Swift (1994) in Y. Doi and K. Fukuda (Eds.), Biodegradable Plastics and Polymers, Elsevier Science, New York.Google Scholar
  12. 12.
    D. L. Kaplan, J. M. Mayer, D. Ball, J. McCassie, A. L. Allen, and P. Stenhouse (1993) in C. Ching, D. L. Kaplan, and E. L. Thomas (Eds.), Biodegradable Polymers and Packaging, Technomic Publishing, Inc., Lancaster, Pennsylvania, pp. 1–42.Google Scholar
  13. 13.
    G. Durand and P. Monsan (1982) Les enzymes. Productions et utilisations industrielles. Bordas, Paris.Google Scholar
  14. 14.
    A. Torres de Dominiguez (1995) PhD Thesis, Université de Montpellier I.Google Scholar
  15. 15.
    A. Yabannavar and R. Bartha (1993) Soil Biol. Biochem. 25, 1469–1475.Google Scholar
  16. 16.
    G. T. G. Keursten and P. H. Groenevelt (1996) Biodegradation 7, 329–333.Google Scholar
  17. 17.
    ISO 17556 (1999) Plastics–Determination of the Ultimate Aerobic Biodegradability in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Released,Geneva, Switzerland.Google Scholar
  18. 18.
    P. A. Holden and M. K. Firestone (1997) J. Environ. Qual. 26, 32–40.Google Scholar
  19. 19.
    S. Akahori and Z. Osawa (1994) Polym.Degrad. Stab. 45, 261–265.Google Scholar
  20. 20.
    H. Sawada (1994) in Y. Doi, and K. Fukuda (Eds.), Biodegradable Plastics and Polymers, pp. 298–312.Google Scholar
  21. 21.
    D. Angehrn, M. Schluep, R. Gälli, and J. Zeyer (1999) Environ. Toxicol. Chem. 18, 2225–2231.Google Scholar
  22. 22.
    M. Nishioka, T. Tuzuki, T. Wanajyo, H. Oonami, and T. Horiuchi (1994) inY. Doi and K. Fukuda (Eds.), Biodegradable Plastics and Polymers, Elsevier Science BV, Amsterdam, pp. 584–590.Google Scholar
  23. 23.
    H. Eya, N. Iwaki, and Y. Otsuji (1994) in Y. Doi and K. Fukuda (Eds.), Biodegradable Polymers and Plastics, Elsevier Science BV, Amsterdam, The Netherlands, pp. 337–344.Google Scholar
  24. 24.
    S. M. Goheen and R. P. Wool (1991) J. Appl. Polym. Sci. 42, 2691–2701.Google Scholar
  25. 25.
    A. Södergard, J. F. Selin, and M. Pantke (1996) Int. Biodeterior. 101–106.Google Scholar
  26. 26.
    U. Witt, R. J. Müller, and W. D. Deckwer (1996) J. Environ. Polym. Degrad. 4, 9–20.Google Scholar
  27. 27.
    J. D. Gu, S. W. Yang, R. D. Eberiel, and S. P. McCarthy (1994) J. Environ. Polym. Degrad. 2, 129–135.Google Scholar
  28. 28.
    M. Tosin, F. Degli-Innocenti, and C. Bastioli (1996) J. Environ. Polym. Degrad. 4, 55–63.Google Scholar
  29. 29.
    Y. D. Kim and S. C. Kim (1998) Polym. Degrad. Stab. 62, 343–352.Google Scholar
  30. 30.
    ECN Draft (1998) Evaluation of the Ultimate Aerobic Biodegradability and Disintegradation of Packaging Materials Under Controlled Composting Conditions–Method by Analysis of Released Carbon Dioxide, Brussels, Belgium.Google Scholar
  31. 31.
    ISO (2000) Plastics–Method of Composting of Plastic Materials in Laboratory Conditions for Determining the Disintegration Percentage, Geneva, Switzerland.Google Scholar
  32. 32.
    C. L. Yue, R. A. Gross, and S. P. McCarthy (1996) Polym. Degrad. Stab. 51, 205–210.Google Scholar
  33. 33.
    M. Day, M. Krzymien, K. Shaw, L. Zaremba, W. R. Wilson, C. Botden, and B. Thomas (1998) Compost Sci. Utiliz. 6, 44–66.Google Scholar
  34. 34.
    D. F. Gilmore, S. Antoun, R. W. Lenz, S. Goodwin, R. Austin, and R. C. Fuller (1992) J. Ind. Microbiol. 10, 199–206.Google Scholar
  35. 35.
    M. Vikman, M. Itävaara, and K. Poutanen (1995) J. Environ. Polym. Degrad. 3, 23–29.Google Scholar
  36. 36.
    F. Degli-Innocenti, M. Tosin, and C. Bastioli (1998) J. Environ. Polym. Degrad. 6, 197–202.Google Scholar
  37. 37.
    F. Degli-Innocenti (1998b) presented at meeting International Biodeterioration Research Group, September 9, 1998, Chester, UK.Google Scholar
  38. 38.
    G. Bellia, M. Tosin, G. Floridi, and F. Degli-Innocenti (1999) Polym. Degrad. Stab. 66, 65–79.Google Scholar
  39. 39.
    ECN Draft (1999) Plastics–Evaluation of the Aerobic Biodegradability of Plastic Materials in a Mineral Solid Medium, Brussels, Belgium.Google Scholar
  40. 40.
    B. Pesenti-Barili, E. Ferdani, M. Mosti, and F. Degli-Innocenti (1991) Appl. Environ. Microbiol. 57, 2047–2051.Google Scholar
  41. 41.
    U. Pagga (1997) Chemosphere 35, 2953–2972.Google Scholar
  42. 42.
    N. E. Sharabi and R. Bartha (1993) Appl. Environ. Microbiol. 59, 1201–1205.Google Scholar
  43. 43.
    T. M. Wendt, A. M. Kaplan, and M. Greenberger (1970) Int. Biodetn. Bull. 6, 139–143.Google Scholar
  44. 44.
    A. Decriaud-Calmon (1998) PhD Thesis, Institut National Polytechnique de Toulouse.Google Scholar
  45. 45.
    ASTM (1992) D5338-92 Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, American Society for Testing and Materials, Philadelphia.Google Scholar
  46. 46.
    A. V. Yabannavar and R. Bartha (1994) Appl. Environ. Microbiol. 60, 3608–3614.Google Scholar
  47. 47.
    M. Okada, S. Ito, K. Aoi, and M. Atsumi (1994) J. Appl. Polym. Sci. 51, 1045–1051.Google Scholar
  48. 48.
    J. D. Gu, D. Eberiel, S. P. McCarthy, and R. A. Gross (1993a) J. Environ. Polym. Degrad. 1, 281–291.Google Scholar
  49. 49.
    L. A. De Baere, B. De Wilde, and R. Tillinger,(1994) in Y. Doi and K. Fukuda (Eds.) Biodegradable Plastics and Polymers, Elsevier Science BV, Amsterdam, The Netherlands, pp. 323–330.Google Scholar
  50. 50.
    K. E. Spence, A. L. Allen, S. Wang, and J. Jane (1996) in R. M. Ottenbrite, S. J. Huang, and K. Park (Eds.), Hydrogels and Biodegradable Polymers for Bioapplications, ASC, Washington, pp. 149–158.Google Scholar
  51. 51.
    A. I. Garcia-Valcarcel and J. L. Tadeo (1999) J. Agric. Food Chem., 47, 3895–3900.Google Scholar
  52. 52.
    D. J. Suler and M. S. Finstein (1997) Appl. Environ. Microbiol. Amsterdam, 33, 345–350.Google Scholar
  53. 53.
    J. D. Gu, D. T. Eberiel, S. P. McCarthy, and R. A. Gross (1993b) J. Environ. Polym. Degrad. 1, 143–153.Google Scholar
  54. 54.
    M. Agarwal, K.W. Koelling, and J. J. Chalmers (1998) Biotechnol. Biodegrad. Prog. 14, 517–526.Google Scholar
  55. 55.
    M. Ratajska and S. Boryniec (1998) React. Funct. Polym. 38, 35–49.Google Scholar
  56. 56.
    M. Ratajska and S. Boryniec (1999) Polym. Adv. Technol. 10, 625–633.Google Scholar
  57. 57.
    F. Degli-Innocenti, M. Tosin, G. Bellia, and C. Bastioli (1998a) In Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers, Wiley-VCH, Münster, Germany.Google Scholar
  58. 58.
    ECN Draft (1998a) Evaluation of the Disintegration of Packaging Materials in Practical Oriented Tests Under Defined Composting Conditions, Brussels, Belgium.Google Scholar
  59. 59.
    U. Witt, R. J. Müller, and W. D. Deckwecker (1995) J. Environ. Polym. Degrad. 3, 215–223.Google Scholar
  60. 60.
    G. Hanlon (2000) Grass and Leaf Compost Testing Program and Use Guide, City of Lincoln, Public Works/Utilities Department, http://www.ci.lincoln.ne.us/city/pworks/waste/recycle/index.htmGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Sophie Grima
    • 1
    • 2
  • Véronique Bellon-Maurel
    • 1
  • Pierre Feuilloley
    • 1
  • Françoise Silvestre
    • 3
  1. 1.CemagrefMontpellier Cedex 01France
  2. 2.Laboratoire de Chimie Agro-industrielle UMR 1010 INRA/INPT-ENSIACETEcole Nationale Supérieure des Ingénieurs en Arts Chimiques et TechnologiquesToulouse cedexFrance
  3. 3.Laboratoire de Chimie Agro-industrielle UMR 1010 INRA/INPT-ENSIACETEcole Nationale Supérieure des Ingénieurs en Arts Chimiques et TechnologiquesToulouse cedexFrance

Personalised recommendations