Skip to main content
Log in

Aerobic Biodegradation of Polymers in Solid-State Conditions: A Review of Environmental and Physicochemical Parameter Settings in Laboratory Simulations

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

During the last few years, biodegradable polymers have been developed to replace petrochemical polymers. Until now, research devoted to these polymers essentially focused on their biodegradability. There is now a need to bear out their nontoxicity. To verify this, the biodegradation must be carried out in accelerated laboratory tests which allow the metabolites and residues to be recovered. To reproduce the natural conditions (compost, field) as closely as possible, degradation experiments must be run on solid-state substrates. We review studies of aerobic degradation in solid-state substrates. This article focuses in particular on the environmental, physical, and chemical parameters (such as substrate nature, moisture, temperature, C/N ratio, and pH) that influence biodegradation kinetics. This study also aims at finding the solid substrate most adapted to residues and metabolite recovery. The most significant parameters would appear to be the substrate type, moisture content, and temperature. Inert substrates such as vermiculite are well suited to residue extraction. This review also opens the field to new research aimed at optimizing conditions for aerobic solid-state biodegradation and at recovering the metabolites and residues of this degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Decriaud-Calmon, V. Bellon-Maurel, and F. Silvestre (1998) Adv. Polym. Sci. 135, 207–226.

    Google Scholar 

  2. R. F. Müller, J. Augusta, T. Walter, and H. Widdecke (1994) in Y. Doi and K. Fukuda, (Eds.), Biodegradable plastics and polymers, Elsevier Science BV, Amsterdam, pp. 237–249.

    Google Scholar 

  3. M. Van der Zee, L. Sistma, H. Tournois, and D. De Wit (1994) Chemosphere 28, 1757–1771.

    Google Scholar 

  4. European Committee for Normalisation (1998) Evaluation of the, Ultimate Aerobic Biodegradability and Disintegration of Packaging Materials Under Controlled Composting Conditions–Method by Analysis of Released Carbon Dioxide TC261/SC4/N42, Brussels, Belgium.

    Google Scholar 

  5. Organisation for Economic Cooperation and Development 301B (1992) Guidelines for testing of chemicals, Paris, France.

  6. ASTM (1992) D5210-92 Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  7. ASTM (1992) D5209-92 Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  8. U. Pagga, D. B. Beimborn, J. Boelens, and B. De Wilde (1995) Chemosphere 31, 4475–4487.

    Google Scholar 

  9. M. Tosin, F. Degli-Innocenti, and C. Bastioli (1998) J. Environ. Polym. Degrad. 6, 79–90.

    Google Scholar 

  10. M. Van der Zee (1997) PhD Thesis, Twente.

  11. G. Swift (1994) in Y. Doi and K. Fukuda (Eds.), Biodegradable Plastics and Polymers, Elsevier Science, New York.

    Google Scholar 

  12. D. L. Kaplan, J. M. Mayer, D. Ball, J. McCassie, A. L. Allen, and P. Stenhouse (1993) in C. Ching, D. L. Kaplan, and E. L. Thomas (Eds.), Biodegradable Polymers and Packaging, Technomic Publishing, Inc., Lancaster, Pennsylvania, pp. 1–42.

    Google Scholar 

  13. G. Durand and P. Monsan (1982) Les enzymes. Productions et utilisations industrielles. Bordas, Paris.

    Google Scholar 

  14. A. Torres de Dominiguez (1995) PhD Thesis, Université de Montpellier I.

  15. A. Yabannavar and R. Bartha (1993) Soil Biol. Biochem. 25, 1469–1475.

    Google Scholar 

  16. G. T. G. Keursten and P. H. Groenevelt (1996) Biodegradation 7, 329–333.

    Google Scholar 

  17. ISO 17556 (1999) Plastics–Determination of the Ultimate Aerobic Biodegradability in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Released,Geneva, Switzerland.

  18. P. A. Holden and M. K. Firestone (1997) J. Environ. Qual. 26, 32–40.

    Google Scholar 

  19. S. Akahori and Z. Osawa (1994) Polym.Degrad. Stab. 45, 261–265.

    Google Scholar 

  20. H. Sawada (1994) in Y. Doi, and K. Fukuda (Eds.), Biodegradable Plastics and Polymers, pp. 298–312.

  21. D. Angehrn, M. Schluep, R. Gälli, and J. Zeyer (1999) Environ. Toxicol. Chem. 18, 2225–2231.

    Google Scholar 

  22. M. Nishioka, T. Tuzuki, T. Wanajyo, H. Oonami, and T. Horiuchi (1994) inY. Doi and K. Fukuda (Eds.), Biodegradable Plastics and Polymers, Elsevier Science BV, Amsterdam, pp. 584–590.

    Google Scholar 

  23. H. Eya, N. Iwaki, and Y. Otsuji (1994) in Y. Doi and K. Fukuda (Eds.), Biodegradable Polymers and Plastics, Elsevier Science BV, Amsterdam, The Netherlands, pp. 337–344.

    Google Scholar 

  24. S. M. Goheen and R. P. Wool (1991) J. Appl. Polym. Sci. 42, 2691–2701.

    Google Scholar 

  25. A. Södergard, J. F. Selin, and M. Pantke (1996) Int. Biodeterior. 101–106.

  26. U. Witt, R. J. Müller, and W. D. Deckwer (1996) J. Environ. Polym. Degrad. 4, 9–20.

    Google Scholar 

  27. J. D. Gu, S. W. Yang, R. D. Eberiel, and S. P. McCarthy (1994) J. Environ. Polym. Degrad. 2, 129–135.

    Google Scholar 

  28. M. Tosin, F. Degli-Innocenti, and C. Bastioli (1996) J. Environ. Polym. Degrad. 4, 55–63.

    Google Scholar 

  29. Y. D. Kim and S. C. Kim (1998) Polym. Degrad. Stab. 62, 343–352.

    Google Scholar 

  30. ECN Draft (1998) Evaluation of the Ultimate Aerobic Biodegradability and Disintegradation of Packaging Materials Under Controlled Composting Conditions–Method by Analysis of Released Carbon Dioxide, Brussels, Belgium.

    Google Scholar 

  31. ISO (2000) Plastics–Method of Composting of Plastic Materials in Laboratory Conditions for Determining the Disintegration Percentage, Geneva, Switzerland.

  32. C. L. Yue, R. A. Gross, and S. P. McCarthy (1996) Polym. Degrad. Stab. 51, 205–210.

    Google Scholar 

  33. M. Day, M. Krzymien, K. Shaw, L. Zaremba, W. R. Wilson, C. Botden, and B. Thomas (1998) Compost Sci. Utiliz. 6, 44–66.

    Google Scholar 

  34. D. F. Gilmore, S. Antoun, R. W. Lenz, S. Goodwin, R. Austin, and R. C. Fuller (1992) J. Ind. Microbiol. 10, 199–206.

    Google Scholar 

  35. M. Vikman, M. Itävaara, and K. Poutanen (1995) J. Environ. Polym. Degrad. 3, 23–29.

    Google Scholar 

  36. F. Degli-Innocenti, M. Tosin, and C. Bastioli (1998) J. Environ. Polym. Degrad. 6, 197–202.

    Google Scholar 

  37. F. Degli-Innocenti (1998b) presented at meeting International Biodeterioration Research Group, September 9, 1998, Chester, UK.

  38. G. Bellia, M. Tosin, G. Floridi, and F. Degli-Innocenti (1999) Polym. Degrad. Stab. 66, 65–79.

    Google Scholar 

  39. ECN Draft (1999) Plastics–Evaluation of the Aerobic Biodegradability of Plastic Materials in a Mineral Solid Medium, Brussels, Belgium.

    Google Scholar 

  40. B. Pesenti-Barili, E. Ferdani, M. Mosti, and F. Degli-Innocenti (1991) Appl. Environ. Microbiol. 57, 2047–2051.

    Google Scholar 

  41. U. Pagga (1997) Chemosphere 35, 2953–2972.

    Google Scholar 

  42. N. E. Sharabi and R. Bartha (1993) Appl. Environ. Microbiol. 59, 1201–1205.

    Google Scholar 

  43. T. M. Wendt, A. M. Kaplan, and M. Greenberger (1970) Int. Biodetn. Bull. 6, 139–143.

    Google Scholar 

  44. A. Decriaud-Calmon (1998) PhD Thesis, Institut National Polytechnique de Toulouse.

  45. ASTM (1992) D5338-92 Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  46. A. V. Yabannavar and R. Bartha (1994) Appl. Environ. Microbiol. 60, 3608–3614.

    Google Scholar 

  47. M. Okada, S. Ito, K. Aoi, and M. Atsumi (1994) J. Appl. Polym. Sci. 51, 1045–1051.

    Google Scholar 

  48. J. D. Gu, D. Eberiel, S. P. McCarthy, and R. A. Gross (1993a) J. Environ. Polym. Degrad. 1, 281–291.

    Google Scholar 

  49. L. A. De Baere, B. De Wilde, and R. Tillinger,(1994) in Y. Doi and K. Fukuda (Eds.) Biodegradable Plastics and Polymers, Elsevier Science BV, Amsterdam, The Netherlands, pp. 323–330.

    Google Scholar 

  50. K. E. Spence, A. L. Allen, S. Wang, and J. Jane (1996) in R. M. Ottenbrite, S. J. Huang, and K. Park (Eds.), Hydrogels and Biodegradable Polymers for Bioapplications, ASC, Washington, pp. 149–158.

    Google Scholar 

  51. A. I. Garcia-Valcarcel and J. L. Tadeo (1999) J. Agric. Food Chem., 47, 3895–3900.

    Google Scholar 

  52. D. J. Suler and M. S. Finstein (1997) Appl. Environ. Microbiol. Amsterdam, 33, 345–350.

    Google Scholar 

  53. J. D. Gu, D. T. Eberiel, S. P. McCarthy, and R. A. Gross (1993b) J. Environ. Polym. Degrad. 1, 143–153.

    Google Scholar 

  54. M. Agarwal, K.W. Koelling, and J. J. Chalmers (1998) Biotechnol. Biodegrad. Prog. 14, 517–526.

    Google Scholar 

  55. M. Ratajska and S. Boryniec (1998) React. Funct. Polym. 38, 35–49.

    Google Scholar 

  56. M. Ratajska and S. Boryniec (1999) Polym. Adv. Technol. 10, 625–633.

    Google Scholar 

  57. F. Degli-Innocenti, M. Tosin, G. Bellia, and C. Bastioli (1998a) In Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers, Wiley-VCH, Münster, Germany.

    Google Scholar 

  58. ECN Draft (1998a) Evaluation of the Disintegration of Packaging Materials in Practical Oriented Tests Under Defined Composting Conditions, Brussels, Belgium.

    Google Scholar 

  59. U. Witt, R. J. Müller, and W. D. Deckwecker (1995) J. Environ. Polym. Degrad. 3, 215–223.

    Google Scholar 

  60. G. Hanlon (2000) Grass and Leaf Compost Testing Program and Use Guide, City of Lincoln, Public Works/Utilities Department, http://www.ci.lincoln.ne.us/city/pworks/waste/recycle/index.htm

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grima, S., Bellon-Maurel, V., Feuilloley, P. et al. Aerobic Biodegradation of Polymers in Solid-State Conditions: A Review of Environmental and Physicochemical Parameter Settings in Laboratory Simulations. Journal of Polymers and the Environment 8, 183–195 (2000). https://doi.org/10.1023/A:1015297727244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015297727244

Navigation