Advertisement

Journal of Inorganic and Organometallic Polymers

, Volume 11, Issue 3, pp 193–198 | Cite as

The Use of Poly-L-Lysine to Form Novel Silica Morphologies and the Role of Polypeptides in Biosilicification

  • Siddharth V. Patwardhan
  • Niloy Mukherjee
  • Stephen J. Clarson
Article

Abstract

Silicification at neutral pH and under ambient conditions in vitro is of great interest due to its relationship with silicification in vivo as well as for the benign conditions of the process. As it is important to know the exact group(s) or a particular site in the macromolecules that are responsible for the silicification under these conditions in vivo, poly-L-lysine (PLL) was chosen for this investigation in vitro. Here we report the use of tetramethoxysilane (TMOS) as a silica precursor and the utilization of poly-L-lysine (PLL) for silicification at neutral pH and under ambient conditions. We describe (1) the use of PLL to precipitate silica, (2) the effect of mixing of macromolecules PLL and poly(allylamine hydrochloride) (PAH) to control morphologies of the product, and (3) the formation of novel silica morphologies.

silica biosilicification poly-L-lysine (PLL) poly(allylamine hydrochloride) (PAH) SEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. Kroger, R. Deutzmann, and M. Sumper, Science 286, 1129 (1999).Google Scholar
  2. 2.
    N. Kroger, R. Deutzmann, C. Bergsdorf, and M. Sumper, Proc. Natl. Acad. Sci. USA 97(26), 14133 (2000).Google Scholar
  3. 3.
    S. V. Patwardhan and S. J. Clarson, in Synthesis and Properties of Silicones and Silicone-Modified Materials, S. J. Clarson, J. J. Fitzgerald, M. D. Owen, S. D. Smith, and M. E. Van Dyke, eds. (American Chemical Society, Washington DC, in press).Google Scholar
  4. 4.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, Silicon Chem. (2002), in press.Google Scholar
  5. 5.
    S. V. Patwardhan, N. Mukherjee, and S. J. Clarson, J. Inorg. Organomet. Polym. 11(2), 117 (2001).Google Scholar
  6. 6.
    V. Martin-Jezequel, M. Hildebrand, and M. A. Brzezinski, J. Phycol. 36(5), 821 (2000).Google Scholar
  7. 7.
    J. N. Cha, G. D. Stucky, D. E. Morse, and T. J. Deming, Nature 403, 289 (2000).Google Scholar
  8. 8.
    R. Tacke, Angew. Chem. Int. Ed. 38(20), 3015 (1999).Google Scholar
  9. 9.
    L. L. Brott, D. J. Pikas, R. R. Naik, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarson, and M. O. Stone, Nature 413, 291 (2001).Google Scholar
  10. 10.
    P. W. Whitlock, R. R. Naik, L. L. Brott, S. J. Clarson, D. W. Tomlin, and M. O. Stone, Polym. Preprints 42(1), 252 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Siddharth V. Patwardhan
    • 1
  • Niloy Mukherjee
    • 1
  • Stephen J. Clarson
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of CincinnatiCincinnati

Personalised recommendations