Skip to main content
Log in

Fractal properties of number systems

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this paper we study properties of the fundamental domain F of number systems in the n-dimensional real vector space. In particular we investigate the fractal structure of its boundary F. In a first step we give upper and lower bounds for its box counting dimension. Under certain circumstances these bounds are identical and we get an exact value for the box counting dimension. Under additional assumptions we prove that the Hausdorf dimension of F is equal to its box counting dimension. Moreover, we show that the Hausdorf measure is positive and fnite. This is done by applying the theory of graphdirected self similar sets due to Falconer and Bandt. Finally, we discuss the connection to canonical number systems in number felds, and give some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Bandt, Self-Similar Tilings and Patterns Described by Mappings, in: The Mathematics of Long-Range-Aperiodic Order, ed. R. V. Moody, 45–83, Kluwer, 1997.

  2. M. Barnsley, Fractals Everywhere, Academic Press Inc., Orlando, 1988.

    Google Scholar 

  3. R. Brualdi and H. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  4. K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  5. K. J. Falconer, Fractal Geometry, John Wiley and Sons, Chichester, 1990.

    Google Scholar 

  6. K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 1997.

    Google Scholar 

  7. W. J. Gilbert, Complex Bases and Fractal Similarity, Ann. sc. math. Quebec, 111 (1987), 65–77.

    Google Scholar 

  8. K. GrÖchenig and A. Haas, Self-Similar Lattice Tilings, J. Fourier Anal. Appl. 12 (1994), 131–170.

    Google Scholar 

  9. K. GyŐry, Sur les polynômes à coefficients entiers et de discriminant donné, Publ. Math. Debrecen 23 (1976), 141–165.

    Google Scholar 

  10. J. E. Hutchinson, Fractals and Self-Similarity, Indiana Univ. Math. J. 30 (1981), 713–747.

    Google Scholar 

  11. S. Ito, On the Fractal Curves Induced from the Complex Radix Expansion, Tokyo J. Math. 12 (1989), 300–319.

    Google Scholar 

  12. I. KÁtai, Number Systems and Fractal Geometry, preprint.

  13. I. KÁtai and B. KovÁcs, Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen, Acta Sci. Math. (Szeged) 42 (1980), 99–107.

    Google Scholar 

  14. I. KÁtai and B. KovÁcs, Canonical Number Systems in Imaginary Quadratic Fields, Acta Math. Hungar. 37 (1981), 159–164.

    Google Scholar 

  15. I. KÁtai and I. KÖrnyei, On Number Systems in Algebraic Number Fields, Publ. Math. Debrecen 413–4 (1992), 289–294.

    Google Scholar 

  16. I. KÁtai and J. SzabÓ, Canonical Number Systems for Complex Integers, Acta Sci. Math. (Szeged) 37 (1975), 255–260.

    Google Scholar 

  17. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, 3rd edition, Addison Wesley, Reading, Massachusetts, 1998.

    Google Scholar 

  18. B. KovÁcs and A. PethŐ, Number Systems in Integral Domains, Especially in Orders of Algebraic Number Fields, Acta Sci. Math. (Szeged) 55 (1991), 286–299.

    Google Scholar 

  19. J. Lagarias and Y. Wang, Self-Affine Tiles in R n, Advances in Mathematics 121 (1996), 21–49.

    Google Scholar 

  20. J. Lagarias and Y. Wang, Integral Self-Affie Tiles in R n I. Standard and Nonstandard Digit Sets, J. London Math. Soc. 542 (1996), 161–179.

    Google Scholar 

  21. J. Lagarias and Y. Wang, Integral Self-Affie Tiles in R n II. Lattice Tilings, J. Fourier Anal. Appl. 31 (1998), 83–102.

    Google Scholar 

  22. E. Seneta, Non-negative Matrices, George Allen & Unwin Ltd, London, 1973.

    Google Scholar 

  23. J. M. Thuswaldner, Fractal Dimension of Sets Induced by Bases of Imaginary Quadratic Fields, Math. Slovaca 48 (1998), 365–371.

    Google Scholar 

  24. A. Vince, Rep-tiling Euclidean Space, Aequationes Math. 50 (1995), 191–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W., Thuswaldner, J.M. & Tichy, R.F. Fractal properties of number systems. Periodica Mathematica Hungarica 42, 51–68 (2001). https://doi.org/10.1023/A:1015292422840

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015292422840

Keywords

Navigation