Ukrainian Mathematical Journal

, Volume 53, Issue 11, pp 1910–1919 | Cite as

Asymptotic Behavior of Logarithmic Potential of Zero Kind

  • M. V. Zabolots'kyi


Under a fairly general condition on the behavior of a Borel measure,we obtain unimprovable asymptotic formulas for its logarithmic potential.


General Condition Asymptotic Behavior Asymptotic Formula Borel Measure Logarithmic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Landkof, Foundations of Modern Potential Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    S. Yu. Favoros, “On sets of descent for subharmonic functions of regular growth,” Sib. Mat. Zh., 20, No. 6, 1294–1302 (1979).Google Scholar
  3. 3.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1981).Google Scholar
  4. 4.
    W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, London-New York (1976).Google Scholar
  5. 5.
    A. A. Gol'dberg and N. V. Zabolotskii, “Concentration index of a subharmonic function of order zero,” Mat. Zametki, 34, No. 2, 227–236 (1983).Google Scholar
  6. 6.
    M. L. Cartwright, Integral Functions, Cambridge University Press, Cambridge (1956).Google Scholar
  7. 7.
    A. F. Grishin, “On the regularity of growth of subharmonic functions,” Teor. Funkts. Funkts. Anal. Prilozhen., Issue 8, 126–135 (1969).Google Scholar
  8. 8.
    A. V. Bratishchev and Yu. V. Korobeinik, “On some characteristics of growth of subharmonic functions,” Mat. Sb., 106, No. 1, 44–65 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • M. V. Zabolots'kyi
    • 1
  1. 1.Lviv UniversityLviv

Personalised recommendations