Skip to main content
Log in

Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Wastewater treatment is a huge industryworldwide. Despite the massive capital andoperating costs, only a relatively small amountof R&D investment is made. This might havebeen related to the limited demands in terms ofeffluent quality in the past, but today'senvironmental awareness requires much strictereffluent standards to be achieved. This inturn should give sufficient incentives,together with the possible large cost savings,to increase the R&D activities in this field. There are certainly significant knowledge gapsto be filled and substantial benefits could begained from this.

A range of knowledge gaps are identified inthis paper, extending from the role ofintermediates in nutrient removal overparameter estimation in modelling andsimulation to understanding the microbialmetabolic pathways at a genetic and enzymaticlevel. These gaps are opportunities andchallenges for all researchers andprofessionals in this field. Addressing themwill help substantially in the continuingdevelopment of wastewater treatmenttechnologies.

The complexity of biological wastewatertreatment processes requires a broad range oftools and expertise to address the knowledgegaps. Novel process analysis tools arecritically important to investigate biologicaltreatment processes in future. They will comefrom different expertise areas and will need tobe used in close integration to gain maximalbenefits from the efforts. These tools willlikely include respirometry, novel chemicalanalyses, microsensors, gene-basedidentification, microbial physiology techniquesand integrated modelling and simulation. Examples of the application of such techniquesare provided to demonstrate the way thesetechniques may be used in future. In the nextfew years, there is likely an exciting andhighly interactive period of research anddevelopment for the wastewater industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreasen K & Nielsen PH (1997) Application of microautoradiography to study substrate uptake by filamentous microorganisms in activated sludge. Appl. Environ. Microbiol. 63: 3662-3668

    Google Scholar 

  • Avcioglu E, Orhon D & Sözen S (1998) A new method for the assessment of heterotrophic endogenous respiration rate under aerobic and anoxic conditions. Wat. Sci. Tech. 38 (8-9): 95-103

    Google Scholar 

  • Bakti NAK & Dick RI (1992) A model for a nitrifying suspendedgrowth reactor incorporating intraparticle diffusional limitation. Wat. Res. 26: 1681-1690

    Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders W, Siegrist H & Vavilin V (in press) The IWA Anaerobic Digestion Model No1. IWA Publishing, London.

  • Beun JJ, Hendricks A, van Loosdrecht MCM, Morgenroth E, Wilderer PA & Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Wat. Res. 33: 2283-2290

    Google Scholar 

  • Biggs CA & Lant PA (2000) Activated sludge flocculation: On-line determination of floc size and the effect of shear. Wat. Res. 34: 2542-2550

    Google Scholar 

  • Bond PL, Erhart R, Wagner M, Keller J & Blackall LL (1999a) Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl. Environ. Microbiol. 65: 4077-4084

    Google Scholar 

  • Bond PL, Keller J & Blackall LL (1999b) Bio-P and non-bio-P bacteria identification by a novel microbial approach. Wat. Sci. Tech. 39(6): 13-20

    Google Scholar 

  • Brock TD & Brock ML (1966) Autoradiography as a tool in microbial ecology. Nature 209: 734-736

    Google Scholar 

  • Brock TD, Madigan MT, Martinko JM & Parker J (1994) Biology of Microorganisms. Prentice-Hall, London

    Google Scholar 

  • Burrell PC, Keller J & Blackall LL (1998) Microbiology of a nitrite-oxidizing bioreactor. Appl. Environ. Microbiol. 64: 1878-1883

    Google Scholar 

  • Cech JS & Hartman P (1993) Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Wat. Res. 27: 1219-1225

    Google Scholar 

  • Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J, Jenkins D & Blackall LL (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 66: 1175-1182

    Google Scholar 

  • DeLong EF, Wickham GS & Pace NR (1989) Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells. Science 243: 1360-1363

    Google Scholar 

  • Dunny GM & Winans SC (1999) Cell-Cell Signaling in Bacteria. ASM Press, Washington, D.C., 367 pp.

    Google Scholar 

  • Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR & Zehnder AJB (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol. 175: 198-207

    Google Scholar 

  • Ekama GA, Barnard JL, Günthert FW, Krebs P, McCorquodale JA, Parker DS & Wahlberg EJ (1997) IAWQ Scientific and Technical Report No. 6 on Secondary Settling Tanks: Theory, Modelling, Design and Operation. Simpson Drewett and Co. Ltd., Richmond, Surrey, 216 pp.

    Google Scholar 

  • Fukase T, Shibata M & Miyaji Y (1985) The role of an anaerobic stage on biological phosphorus removal. Wat. Sci. Tech. 17(2-3): 69-80

    Google Scholar 

  • Fuqua WC, Winans SC & Greenburg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269-275

    Google Scholar 

  • Gapes D & Keller J (2001) Analysis of biological wastewater treatment processes using multicomponent gas phase mass balancing. Biotechnol. Bioeng. 76: 361-375

    Google Scholar 

  • Gernaey K, Petersen B, Ottoy J-P & Vanrolleghem PA (2001) Activated sludge monitoring with combined respirometric-titrimetric measurements. Wat. Res. 35: 1280-1294

    Google Scholar 

  • Gieseke A, Purkhold U, Wagner M, Amann R & Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 67: 1351-1362

    Google Scholar 

  • Gray ND, Howarth R, Pickup RW, Gwyn Jones J & Head IM (2000) Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl. Environ. Microbiol. 66: 4518-4522

    Google Scholar 

  • Gujer W, Henze M, Mino T & van Loosdrecht MCM (1999) Activated Sludge Model No. 3. Wat. Sci. Tech. 39(1): 183-193

    Google Scholar 

  • Harremoës P (1978) Biofilm kinetics. In: Mitchell R (Ed) Water Pollution Microbiology (pp 71-109). John Wiley & Sons, New York

    Google Scholar 

  • Henze M, Grady CPL, Guyer W, Marais G v. R & Matsuo T (1987) Activated Sludge Model No. 1. Arrowsmith Ltd., Bristol, 33 pp.

    Google Scholar 

  • Henze M, Grady CPL, Guyer W, Marais G v. R & Matsuo T (1995) Activated Sludge Model No. 2. Bourne Press Ltd., Bournemouth, 32 pp.

    Google Scholar 

  • Henze M, Guyer W, Mino T, Matsuo T, Wentzel M, Marais G v. R & van Loosdrecht MCM (1999) Activated Sludge Model No. 2d, ASM2D. Wat. Sci. Tech. 39(1): 165-182

    Google Scholar 

  • Hesselmann RPX, Werlen C, Hahn D, van der Meer JR & Zehnder AJB (1999) Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22: 454-465

    Google Scholar 

  • Jenkins D, Richard MG & Daigger GT (1993) Manual on the Causes and Control of Activated Sludge Bulking and Foaming. Lewis Publishers, New York, 193 pp.

    Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer, K-H, Pommerening-Röser A, Koops H-P & Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051

    Google Scholar 

  • Kawaharasaki M, Tanaka H, Kanagawa T & Nakamura K (1999) In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4',6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Wat. Res. 33: 257-265

    Google Scholar 

  • Keller J & Yuan Z (2001) Combined hydraulic and biological modelling and full-scale validation of SBR processes. Fifth Kollekolle Seminar: Modelling of Activated Sludge Processes in Theory and Practise (pp 169-178).

  • Kollekolle, Denmark Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH & Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65: 1289-1297

    Google Scholar 

  • Lewandowski Z, Walser G & Characklis G (1991) Reaction kinetics in biofilms. Biotechnol. Bioeng. 38: 877-882

    Google Scholar 

  • Liu W-T, Nielsen AT, Wu J-H, Tsai C-S, Matsuo Y & Molin S (2001) In situ identification of polyphosphate-and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ. Microbiol. 3: 110-122

    Google Scholar 

  • Massone A, Gernary K, Rozzi A & Verstraete W (1998) Measurement of ammonium concentration and nitrification rate by a new titrimetric biosensor. Water Environ. Res. 70: 343-350

    Google Scholar 

  • Mino T, Arun V, Tsuzuki Y & Matsuo T (1987) Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In: Ramadori R (Ed) Biological Phosphate Removal from Wastewaters (pp 27-38). Pergamon Press, Oxford

    Google Scholar 

  • Mino T, van Loosdrecht MCM & Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res. 32: 3193-3207

    Google Scholar 

  • Morgenroth E, Sherden T, van Loosdrecht MCM, Heijnen JJ & Wilderer PA (1997) Aerobic granular sludge in a sequencing batch reactor. Wat. Res. 31: 3191-3194

    Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA & Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol. Ecol. 16: 177-183

    Google Scholar 

  • Mulder JW & van Kempen R (1997) N-removal by SHARON. Water Qual. Internat. 2: 30-31

    Google Scholar 

  • Nielsen AT, Liu W-T, Filipe C, Grady L, Molin S & Stahl DA (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl. Environ. Microbiol. 65: 1251-1258

    Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR & Stahl DA (1986) Microbial ecology and evolution: A ribosomal RNA approach. Annu. Rev. Microbiol. 40: 337-365

    Google Scholar 

  • Ostle AG & Holt JG (1982) Nile Blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl. Environ. Microbiol. 44: 238-241

    Google Scholar 

  • Ouverney CC & Fuhrman JA (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65: 1746-1752

    Google Scholar 

  • Petersen B, Gernaey K & Vanrolleghem P (2001) Practical identifiability of model parameters by combined respirometrictitrimetric measurements. Wat. Sci. Tech. 43(7): 347-355

    Google Scholar 

  • Pochana K, Keller J & Lant PA (1999) Model development for simultaneous nitrification and denitrification. Wat. Sci. Tech. 39(1): 235-243

    Google Scholar 

  • Pratt S, Yuan Z & Keller J (2000) Development of H-DOC biosensor for characterisation of sludge kinetics and wastewater composition. In: Prince R, Brooke S & Ho L (Eds) Environmental Engineering Research Event. Victor Harbour, South Australia, CD-ROM

    Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P & Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 66: 5368-5382

    Google Scholar 

  • Robertson LA & Kuenen JG (1984) Aerobic denitrification: a controversy revived. Arch. Microbiol. 139: 351-354

    Google Scholar 

  • Robertson LA & Kuenen JG (1991) Physiology of nitrifying and denitrifying bacteria. In: Rogers JE & Whitman WB (Eds) Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes (pp 189-199). American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Schalk J, de Vries S, Kuenen JG & Jetten MSM (2000) Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemisty 39: 5405-5412

    Google Scholar 

  • Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten MSM, Metzger JW, Schleifer K-H & Wagner M (2000) Molecular evidence for genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23: 93-106

    Google Scholar 

  • Siegrist H, Brunner G, Koch G, Phan LC & Le VC (1999) Reduction of biomass decay rate under anoxic and anaerobic conditions. Wat. Sci. Tech. 39(1): 129-137

    Google Scholar 

  • Siegrist H, Reithaar S, Koch G & Lais P (1998) Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Wat. Sci. Tech. 38: 241-248

    Google Scholar 

  • Spanjers H, Vanrolleghem P, Olsson G & Dold P (1998) Respirometry in Control of the Activated Sludge Process. Arrowsmith Ltd., London

    Google Scholar 

  • Streichan M, Golecki JR & Schön G (1990) Polyphosphate-accumulating bacteria from sewage treatment plants with different processes for biological phosphorus removal. FEMS Microbiol. Ecol. 73: 113-124

    Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG & Jetten MSM (1999a) Missing lithotroph identified as new planctomycete. Nature 400: 446-449

    Google Scholar 

  • Strous M, Kuenen JG & Jetten MSM (1999b) Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 65: 3248-3250

    Google Scholar 

  • Strous M, van Gerven E, Zheng P, Kuenen JG & Jetten MSM (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Wat. Res. 31: 1955-1962

    Google Scholar 

  • Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J & van Verseveld HW (1999) Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Appl. Environ. Microbiol. 65: 2471-2477

    Google Scholar 

  • Turk O & Mavinic DS (1989) Stability of nitrite build-up in an activated sludge system. J. Wat. Poll. Cont. Fed. 61: 1440-1448

    Google Scholar 

  • van de Graaf AA, Mulder A, deBruijn P, Jetten MSM, Robertson LA & Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61: 1246-1251

    Google Scholar 

  • van Loosdrecht MCM & Henze M(1999) Maintenance, endogenous respiration, lysis, decay and predation. Wat. Sci. Tech. 39(1): 107-117

    Google Scholar 

  • Wilderer PA, Irvine RL & Goronszy MC (2001) IWA Scientific and Technical Report No 10 on Sequencing Batch Reactor Technology. IWA Publishing, London, 76 pp

    Google Scholar 

  • Wood MG, Howes T, Keller J & Johns MR (1998) Two dimensional computational fluid dynamic models for waste stabilisation ponds. Wat. Res. 32: 958-963

    Google Scholar 

  • Yuan Z & Blackall LL (2002) Sludge population optimisation: a new dimension for the control of biological wastewater treatment systems. Wat. Res. 32: 482-490

    Google Scholar 

  • Yuan Z & Bogaert H (2001) Titrimetric respirometer measuring the nitrifiable nitrogen in wastewater using in-sensor-experiments. Wat. Res. 35: 268-276

    Google Scholar 

  • Yuan Z, Bogaert H & Verstraete W (2000) Reducing the size of a nitrifying activated sludge wastewater treatment plant by shortening the retention time of inert solids. Wat. Res. 34: 539-549

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda L. Blackall*.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, J., Yuan, Z. & Blackall*, L.L. Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development. Re/Views in Environmental Science and Bio/Technology 1, 83–97 (2002). https://doi.org/10.1023/A:1015187630064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015187630064

Navigation