Advertisement

The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system

  • K. Franks
  • V. Salih
  • J. C. Knowles
  • I. Olsen
Article

Abstract

This paper presents a systematic study of the MgO–CaO–Na2O–P2O5 glass system, which has great potential to be used as temporary hard and soft tissue implant materials. An overall study of solubility behavior of ternary and quaternary-based phosphate glass system have been carried out in order to understand the out-leaching progress of different ions and to determine their effect on cell proliferation. Originally, soluble phosphate based glasses within the ternary glass system of Na2O–CaO–P2O5 have been developed to create a simple baseline system. This paper, however, presents the development of this system by introducing magnesium oxide as a partial calcium oxide substitute and solubility behaviors as well as cell studies have been carried out to check the effect on magnesium ions. Glasses have been prepared via standard glass melting techniques and their solubility behavior has been tested in distilled water via simple weight loss, pH and ion measurements. The way the glasses dissolve is an inverse exponential behavior which is mirrored by the calcium ion release. Other ions show a less exponential behavior. The MTT test has been used to check preliminary in vitro studies on a human MG63 cell line and the result indicates that cell proliferation is increased for glasses with minimal CaO substitution.

Keywords

Na2O MG63 Cell Phosphate Glass Soluble Phosphate Glass System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Evans, Biomater. 12 (1991) 574-576.Google Scholar
  2. 2.
    M. Kumar, J. Xie, K. Chittur and C. Riley, ibid. 20 (1999) 1389-1399.Google Scholar
  3. 3.
    R. I. Martin and P. W. Brown, J. Mater. Sci. Mater. Med. 6 (1995) 138-143.Google Scholar
  4. 4.
    R. N. Correia, M. C. F. Magalhaes, P. A. A. P. Marques and A. M. R. Senos, ibid. 7 (1996) 501-505.Google Scholar
  5. 5.
    K. A. Hing, S. M. Best and W. Bonfield, ibid. 10 (1999) 135-145.Google Scholar
  6. 6.
    D. S. Metsger, M. R. Rieger and D. W. Foreman, ibid. 10 (1999) 9-17.Google Scholar
  7. 7.
    L. L. Hench, J. Am. Ceram. Soc. 81 (1998) 1705-1728.Google Scholar
  8. 8.
    L. L. Hench, ibid. 74 (1991) 1487-1510.Google Scholar
  9. 9.
    T. Nonami and S. Tsutsumi J. Biomed. Mater. Res. 50 (2000) 8-15.Google Scholar
  10. 10.
    T. Kasuga, M. Sawada, M. Nogami and Y. Abe Biomater. 20 (1999) 1415-1420.Google Scholar
  11. 11.
    T. Kukubo, H. Kushitani, C. Ohtsuki, S. Sakka and T. Yamamuro, J. Mater. Sci. Mater. Med. 3 (1992) 79-83.Google Scholar
  12. 12.
    W. Hoeland, W. Vogel, K. Naumann and J. Gummel, J. Biomed. Mater. Res. 19 (1985) 3303-3312.Google Scholar
  13. 13.
    R. Hill and D. Wood, J. Mater. Sci. Mater. Med. 6 (1995) 311-318.Google Scholar
  14. 14.
    T. Kukubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, Y. Kitsugi and T. Yamamuro J. Biomed. Mater. Res. 24 (1990) 331-343.Google Scholar
  15. 15.
    Ito S. Kukubo, M. Shigematsu, S. Sakka and T. Yamamuro J. Mater. Sci. 20 (1985) 2001-2004.Google Scholar
  16. 16.
    W. Vogel and W. Hoeland Ange. Chem. 99 (1987) 541-558.Google Scholar
  17. 17.
    M. Nagase, Y. Abe, M. Chigira and E. Udagawa, Biomaterials 13 (1992) 172-175.Google Scholar
  18. 18.
    A. Piattelli, A. Scarano and M. Paolantonio, ibid. 17 (1996) 1725-1731.Google Scholar
  19. 19.
    K. James, H. Levene, J. R. Parson and J. Kohn, ibid. 20 (1999) 2203-2212.Google Scholar
  20. 20.
    A. Lendlein, Chemie in unserer Zeit 5 (1999) 279-295.Google Scholar
  21. 21.
    M. S. Widmer, P. K. Gupta, L. Lu, R. K. Meszlenyi, G. R. D. Evans, K. Brandt, T. Savel, A. Gurlek, C. W. Patrick Jr and A. G. Mikos, Biomaterials 19 (1998) 1945-1955.Google Scholar
  22. 22.
    M. Wang, L. L. Hench and W. Bonfield, J. Biomed. Mater. Res. 42 (1998) 577-586.Google Scholar
  23. 23.
    J. C. Knowles, G. W. Hastings, H. Ohta, S. Niwa and N. Boeree, Biomaterials 13 (1992) 491-496.Google Scholar
  24. 24.
    N. R. Boeree, J. Dove, J. J. Cooper, J. C. Knowles and G. W. Hastings, ibid. 14 (1993) 793-796.Google Scholar
  25. 25.
    J. F. Oosborn and H. Newesely ibid. 1 (1980) 108-111.Google Scholar
  26. 26.
    K. Franks, I. Abrahams and J. C. Knowles J. Mater. Sci.: Mater. Med. 11 (2000) 609-614.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • K. Franks
    • 1
  • V. Salih
    • 1
  • J. C. Knowles
    • 1
  • I. Olsen
    • 2
  1. 1.Departments of Biomaterials, Eastman Dental InstituteUniversity College LondonLondon
  2. 2.Periodontology, Eastman Dental InstituteUniversity College LondonLondon

Personalised recommendations