Journal of Productivity Analysis

, Volume 17, Issue 3, pp 183–200 | Cite as

Nonparametric Efficiency Analysis under Price Uncertainty: A First-Order Stochastic Dominance Approach

  • Timo Kuosmanen
  • Thierry Post
Article

Abstract

This paper extends the nonparametric approach to efficiency analysis to deal with uncertainty of input-output prices. We generalize the notion of economic efficiency to derive necessary and sufficient first-order stochastic dominance (FSD) efficiency conditions. Interestingly, the FSD conditions include as limiting cases the traditional conditions for economic efficiency and technical efficiency. Furthermore, we propose empirical tests for these FSD conditions, which require minimal assumptions concerning the preferences of the decision-maker and the statistical distribution of the prices. From operational point of view, the FSD conditions can be tested empirically using standard mathematical programming techniques. An empirical application to the Dutch electricity distribution sector illustrates the approach.

nonparametric efficiency analysis data envelopment analysis performance evaluation under uncertainty stochastic dominance electricity distribution sector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afriat, S. (1972). “Efficiency Estimation of Production Functions.” International Economic Review 13(3), 568-598.Google Scholar
  2. Allen, R., A. D. Athanassopoulos, R. G. Dyson and E. Thanassoulis. (1997). “Weight Restrictions and Value Judgements in DEA: Evolution, Development and Future Directions.” Annals of Operations Research 73, 13-34.Google Scholar
  3. Banker, R. D., A. Charnes and W. W. Cooper. (1984). “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis.” Management Science 30(9), 1078-1092.Google Scholar
  4. Banker, R. D. and A. Maindiratta. (1988). “Nonparametric Analysis of Technical and Allocative Efficiencies in Production.” Econometrica 56(6), 1315-1332.Google Scholar
  5. Bertrand, J. (1883). “Théorie Mathématique de la Richesse Sociale.” Journal des Savants, 499-508.Google Scholar
  6. Bogetoft, P. (1996). “DEA on Relaxed Convexity Assumptions.” Management Science 42, 457-465.Google Scholar
  7. Chambers, R. G., Y. Chung and R. Färe. (1998). “Profit, Directional Distance Functions, and Nerlovian Efficiency.” Journal of Optimization Theory and Applications 98(2), 351-364.Google Scholar
  8. Charnes, A., W. Cooper and E. Rhodes. (1978). “Measuring the Efficiency of Decision Making Units.” European Journal of Operational Research 2, 429-444.Google Scholar
  9. Cherchye, L., T. Kuosmanen and T. Post. (2000a). “New Tools for Dealing with Errors-in-Variables in DEA.” Discussion Paper DPS 00.06, Catholic University Leuven, Centre for Economic Studies.Google Scholar
  10. Cherchye, L., T. Kuosmanen and T. Post. (2000b). “Why Convexify? An Assessment of Convexity Assumptions in DEA.” Working Paper W-270, Helsinki School of Economics and Business Administration.Google Scholar
  11. Cherchye, L., T. Kuosmanen and G. T. Post. (2001). “Nonparametric Production Analysis under Alternative Price Conditions.” Discussion Paper DPS 01.05, Catholic University Leuven, Centre for Economic Studies.Google Scholar
  12. Cooper, W. W., Z. M. Huang, V. Lelas, S. Xi and O. B. Olesen. (1998). “Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA.” Journal of Productivity Analysis 9(1), 53-79.Google Scholar
  13. Cournot, A. (1838). Recherches sur les Principes Mathématiques de la Théorie des Richesses. English edition: Researches into the Mathematical Principles of the Theory of Wealth, Edited by N. Bacon. NewYork: Macmillan.Google Scholar
  14. Debreu, G. (1951). “The Coefficient of the Resource Utilization.” Econometrica 19(3), 273-292.Google Scholar
  15. Deprins, D., D. Simar and H. Tulkens. (1984). Measuring Labor Efficiency in Post Offices. In M. Marchand, P. Pestieau and H. Tulkens (eds.), The Performance of Public Enterprises: Concepts and Measurements, North Holland, pp. 243-267.Google Scholar
  16. Färe, R. and S. Grosskopf. (1995). “Non-Parametric Tests of Regularity, Farrell Efficiency, and Goodness of Fit.” Journal of Econometrics 69, 415-425.Google Scholar
  17. Färe, R. and S. Grosskopf. (1997). “Profit Efficiency, Farrell Decompositions and the Mahler Inequality.” Economics Letters 57, 283-287.Google Scholar
  18. Farrell, M. J. (1957). “The Measurement of Productive Efficiency.” Journal of the Royal Statistical Society Series A 120(3), 253-281.Google Scholar
  19. Halme, M., T. Joro, P. Korhonen, S. Salo and J. Wallenius. (1999). “A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis.” Management Science 45(1), 103-115.Google Scholar
  20. Hadar, J. and W. R. Russell. (1969). “Rules for Ordering Uncertain Prospects.” American Economic Review 59, 25-34.Google Scholar
  21. Levy, H. (1992). Stochastic Dominance and Expected Utility: Survey and Analysis.” Management Science 38(4), 555-593.Google Scholar
  22. Kuosmanen, T. (2001). “DEA with Efficiency Classification Preserving Conditional Convexity.” European Journal of Operational Research 132(2), 326-342.Google Scholar
  23. Kuosmanen, T. and G. T. Post. (2001a). “Non-Parametric Tests of Firm Efficiency in Case of Errors-in-Variables: Efficiency Depth Approach.” Working Paper ERS-2001-06-F&A, Erasmus Research Institute of Management (ERIM).Google Scholar
  24. Kuosmanen, T. and G. T. Post. (2001b). “Measuring Economic Efficiency under Imperfect Price Information: With an Application to European Commercial Banks.” European Journal of Operational Research, to appear.Google Scholar
  25. Kuosmanen, T., G. T. Post and S. Scholtes. (2001). “Testing for Productive Efficiency with Errors-in-Variables: With an Application to the Dutch Electricity Sector.”Working Paper ERS-2001-F&A, Erasmus Research Institute of Management (ERIM).Google Scholar
  26. Madden, P. (1986). “Concavity and Optimization in Microeconomics.” Oxford: Blackwell.Google Scholar
  27. McCall, J. J. (1969). “Competitive Production for Constant Risk Utility Functions.” Review of Economic Studies 34, 417-420.Google Scholar
  28. Moschini, G.-C. (2001). “Production Risk and the Estimation of Ex-ante Cost Functions.” Journal of Econometrics 100(2), 357-380.Google Scholar
  29. Neumann, J. Von and O. Morgenstern. (1944). Theory of Games and Economic Behavior. Wiley, New York.Google Scholar
  30. Nerlove, M. (1965). Estimation and Identification of Cobb-Douglas Production Functions. Rand McNally, Chicago, Illinois.Google Scholar
  31. Olesen, O. B. and N. C. Petersen. (1995). “Chance Constrained Efficiency Evaluation.” Management Science 41, 442-457.Google Scholar
  32. Petersen, N. C. (1990). “Data Envelopment Analysis on a Relaxed Set of Assumptions.” Management Science 36(3), 305-314.Google Scholar
  33. Post, G. T. (2001a). “Performance Benchmarking in Stochastic Environments Using Mean-Variance Data Envelopment Analysis.” Operations Research, March-April 2001.Google Scholar
  34. Post, G. T. (2001b). “Transconcave Data Envelopment Analysis.” European Journal of Operational Research 132, 374-389.Google Scholar
  35. Post, G. T. (2001c). “Estimating Non-convex Production Sets Using Transconcave DEA.” European Journal of Operational Research 131, 132-142.Google Scholar
  36. Post, G. T. and J. Spronk. (2000). “Evaluating Productive Performance under Uncertainty: Combining Data Envelopment Analysis, Mean-Variance Analysis, and Multi-Factor Risk Models.” In: Y. Shi and M. Zeleny (eds.), New Frontiers of Decision Making for the Information Technology Era. World Scientific Publishing Co., pp. 249-269.Google Scholar
  37. Sandmo, A. (1971). “On the Theory of the Competitive Firm under Price Uncertainty.” American Economic Review 61, 65-73.Google Scholar
  38. Simar, L. and P. Wilson. (2000). “Statistical Inference in Nonparametric Frontier Models: The State of the Art.” Journal of Productivity Analysis 13(1), 49-78.Google Scholar
  39. Starmer, C. (2000). “Developments in Non-Expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk.” Journal of Economic Literature 38, 332-382.Google Scholar
  40. Thompson, R. G., F. D. Singleton Jr., R. M. Thrall and B. A. Smith. (1986). “Comparative Site Evaluations for Locating High Energy Lab in Texas.” TIMS Interfaces, 1380-1395.Google Scholar
  41. Thompson, R. G., L. N. Langemeier, C.-T. Lee, E. Lee and R. M. Thrall. (1990). “The Role of Multiplier Bounds in Efficiency Analysis with Application to Kansas Farming.” Journal of Econometrics 46, 93-108.Google Scholar
  42. Tulkens, H. (1993). “On FDH Efficiency Analysis: Some Methodological Issues and Application to Retail Banking, Courts, and Urban Transit.” The Journal of Productivity Analysis 4(1), 183-210.Google Scholar
  43. Varian, H. (1984). “The Nonparametric Approach to Production Analysis.” Econometrica 52(3), 579-597.Google Scholar
  44. Varian, H. (1985). “Nonparametric Analysis of Optimizing Behavior with Measurement Error.” Journal of Econometrics 30(1/2), 445-458.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Timo Kuosmanen
    • 1
  • Thierry Post
    • 2
  1. 1.Department of Social SciencesWageningen UniversityWageningenThe Netherlands
  2. 2.Erasmus Research Centre of Management (ERIM) and Department of Finance and AccountingErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations