Skip to main content
Log in

Process Based Reconstruction of Sandstones and Prediction of Transport Properties

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present a process based method for reconstructing the full three-dimensional microstructure of sandstones. The method utilizes petrographical information obtained from two-dimensional thin sections to stochastically model the results of the main sandstone forming processes – sedimentation, compaction, and diagenesis. We apply the method to generate Fontainebleau sandstone and compare quantitatively the reconstructed microstructure with microtomographic images of the actual sandstone. The comparison shows that the process based reconstruction reproduces adequately important intrinsic properties of the actual sandstone, such as the degree of connectivity, the specific internal surface, and the two-point correlation function. A statistical reconstruction of Fontainebleau sandstone that matches the porosity and two-point correlation function of the microtomography data differs strongly from the actual sandstone in its connectivity properties. Transport properties of the samples are determined by solving numerically the local equations governing the transport. Computed permeabilities and formation factors of process based reconstructions of Fontainebleau sandstone compare well with experimental measurements over a wide range of porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, P. M., Jacquin, C. G. and Quiblier, J. A.: 1990, Flow in simulated porous media, Int. J. Multiphase Flow 16, 691–712.

    Google Scholar 

  • Adler, P. M. Jacquin, C. G. and Thovert, J. F.: 1992, The formation factor of reconstructed porous media, Water Resour. Res. 28, 1571–1576.

    Google Scholar 

  • Adler, P. M.: 1992, Porous Media: Geometry and Transports, Butterworth/Heineman, Stoneham.

    Google Scholar 

  • Adler, P. M.: 1999, private communication.

  • Bakke, S. and Øren, P. E.: 1997, 3-D pore-scale modelling of sandstones and flow simulations in the pore networks, SPE J. 2, 136–149.

    Google Scholar 

  • Biswal, B., Manwarth, C. and Hilfer, R.: 1998, Three-dimensional local porosity analysis of porous media, Physica A 255, 221–241.

    Google Scholar 

  • Biswal, B., Manswarth, C., Hilfer, R., Bakke, S. and Øren, P. E.: 1999, Quantitative analysis of experimental and synthetic microstructures for sedimentary rocks, Physica A 273, 452–475.

    Google Scholar 

  • Bourbie, T. and Zinszner, B.: 1985, Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone, J. Geophy. Res. 90, 11524–11532.

    Google Scholar 

  • Bryant, S. L., Cade C. A. and Mellor, D. W.: 1993, Permeability prediction from geological models, AAPG Bull. 77, 1338–1350.

    Google Scholar 

  • Cade, C. A., Evans, I. J. and Bryant, S. L.: 1994, Analysis of permeability controls: A new approach, Clay Minerals 29, 491–501.

    Google Scholar 

  • Coelho, D., Thovert, J. F. and Adler, P. M.: 1997 Geometrical and transport properties of random packings of spheres and aspherical particles, Phy. Rev. E 55, 1959–1978.

    Google Scholar 

  • Coker, D. A., Torquato, S. and Dunsmoir, J. H.: 1996, Morphology and physical properties of Fontainebleau sandstone via tomographic analysis, J. Geophy. Res. 101, 497–506.

    Google Scholar 

  • Coles, M. E., Spanne, P, Muegge, E. L. and Jones, K. W.: 1994, Computer microtomography of reservoir core samples, Proc. 1994 Annual SCA Meeting, Stavanger, Norway, Sept. 12–14.

    Google Scholar 

  • Coles, M. E., Hazlett, R. D., Muegge, E. L., Jones, K. W., Andrews, B., Siddons, P., Peskin, A. and Soll, W. E.: 1996, Developments in synchroton X-Ray microtomography with applications to flow in porous media, paper SPE 36531, Proc. 1996 SPE Annual Technical Conference and Exhibition, Denver, Oct. 6–9.

  • Dullien, F. A. L.: 1992, Porous Media: Fluid Transport and Pore Structure, 2nd edn, Academic Press, New York.

    Google Scholar 

  • Dunsmoir, J. H., Ferguson, S. R., D'Amico, K. L. and Stokes, J. P.: 1991, X-Ray microtomography: A new tool for the characterization of porous media, paper SPE 22860, Proc. 1991 SPE Annual Technical Conference and Exhibition, Dallas, Oct. 6–9.

  • Finney, J.: 1968, Random packings and the structure of the liquid state, Ph.D. thesis, University of London, London, England.

    Google Scholar 

  • Fredrichs, J. T., Greaves, K. H. and Martin, J. W.: 1993, Pore geometry and transport properties of Fontainebleau sandstone, Int. J. Rock Mech. Min. Sci. 30, 691–697.

    Google Scholar 

  • Hazlett, R. D.: 1995, Simulation of capillary dominated displacements in microtomographic images of reservoir rocks, Transport in Porous Media 20, 21–35.

    Google Scholar 

  • Hazlett, R. D.: 1997, Statistical characterization and stochastic modeling of pore networks in relation to fluid flow, Math. Geol. 29, 801–822.

    Google Scholar 

  • Hilfer, R.: 1991, Geometric and dielectric characterization of porous media, Phy. Rev. B, 60–75.

  • Hilfer, R.: 1996, Transport and relaxation phenomena in porous media, Advances in Chemical Physics XCII, 299–424.

    Google Scholar 

  • Holt, R. M., Fjoer, E., Torsoeter, O. and Bakke, S.: 1996, Petrophysical laboratory measurements for basin and reservoir evaluation, Marine Petrol Geol 13, 383–391.

    Google Scholar 

  • Jacquin, C. G.: 1964, Corrélation entrę la perméabilit é et les caract éristiques géometriqu és du gr és de Fontainebleau, Revue Institut Francais du P étrole 19, 921–937.

    Google Scholar 

  • Joshi, M.: 1974, A class of stochastic models for porous media, Ph.D. thesis, University of Kansas.

  • Lin, C. and Cohen, M. H.: 1982, Quantitative methods of microgeometric modelling, J. Appl. Phys. 53, 4152.

    Google Scholar 

  • Mavko, G. and Nur, A.: 1997, The effect of a percolation threshold in the Kozeny–Carman relation, Geophysics 62, 1480–1482.

    Google Scholar 

  • Panda, M. N. and Lake, L. W.: 1995, A physical model of cementation and its effect on single phase permeability, AAPG Bull. 79, 431–443.

    Google Scholar 

  • Quiblier,J. A.: 1984, A new three-dimensional modeling technique for studying porous media, J. Coll. Inter. Sci. 98, 84–102.

    Google Scholar 

  • Roberts, A. P.: Statistical reconstruction of three-dimensional porous media from two-dimensional images, Phy. Rev. E 56, 3203–3212.

  • Schwartz, L. M. and Kimminau, S.: 1987, Analysis of electrical conduction in the grain consolidation model, Geophysics 52, 1402–1411.

    Google Scholar 

  • Schwartz, L. M., Auzerais, F., Dunsmoir, J. H., Marys, N., Bentz, D. P. and Torquato, S.: 1994, Transport and diffusion in three-dimensional composite media, Physica A 207, 28–36.

    Google Scholar 

  • Spanne, P., Thovert, J. F., Jacquin, C. J., Lindquist, W. B., Jones K. W. and Adler, P. M.: 1994, Synchrotron computed microtomography of porous media: Toplogy and transports, Phy. Rev. Lett. 73, 2001–2004.

    Google Scholar 

  • Thovert, J. F., Sallés, J. and Adler, P. M.: 1993, Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation, J. Microscopy 170, 65–79.

    Google Scholar 

  • Yeong, C. L. Y and Torquato, S.: 1998a, Reconstructing random media, Phy. Rev. E 57, 495–506.

    Google Scholar 

  • Yeong, C. L. Y and Torquato, S.: 1998b, Reconstructing random media. II. Three-dimensional media from two-dimensional cuts, Phy. Rev. E 58, 224–233.

    Google Scholar 

  • Øren, P. E., Bakke, S. and Arntzen, O. J.: 1998, Extending predictive capabilities to network models, SPE J. 3, 324–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ØREN, PE., Bakke, S. Process Based Reconstruction of Sandstones and Prediction of Transport Properties. Transport in Porous Media 46, 311–343 (2002). https://doi.org/10.1023/A:1015031122338

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015031122338

Navigation