Skip to main content
Log in

Determination of Dominant Pathways in Chemical Reaction Systems: An Algorithm and Its Application to Stratospheric Chemistry

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The analysis of complex chemical reaction systems is frequently complicatedbecause of the coexistence of fast cyclic reaction sequences and slower pathways that yield a net production or destruction of a certain species of interest.An algorithm for the determination of both these types of reaction sequences (in a given reaction system) is presented. Under the assumption that reaction rates are known, it finds the mostimportant pathways by solving a linear optimization problem for each of them.This algorithm may be used as a tool for the interpretation of chemical model runs.For illustration, it is applied to examples in stratospheric chemistry, including the determination of catalytic ozone destruction cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. G., Brune, W. H., Lloyd, S. A., Toohey, D. W., Sander, S. P., Starr, W. L., Loewenstein, M., and Podolske, J. R., 1989: Kinetics of O3 destruction by ClO and BrO within the Antarctic vortex. An analysis based on in situ ER-2 data, J. Geophys. Res. 94, 11480–11520.

    Google Scholar 

  • Bates, D. R. and Nicolet, M., 1950: The photochemistry of atmospheric water vapor, J. Geophys. Res. 55, 301–327.

    Google Scholar 

  • Brasseur, G. P., Tie, X. X., Rasch, P. J., and Lefèvre, F., 1997: A three-dimensional simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere, J. Geophys. Res. 102, 8909–8930.

    Google Scholar 

  • Carslaw, K. S., Luo, B., and Peter, T., 1995: An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett. 22, 1877–1880.

    Google Scholar 

  • Chipperfield, M. P., Cariolle, D., Simon, P., Ramaroson, R., and Lary, D. J., 1993: A threedimensional modelling study of trace species in the Arctic lower stratosphere during winter 1989-90, J. Geophys. Res. 98, 7199–7218.

    Google Scholar 

  • Cicerone, R. J., 1987: Changes in stratospheric ozone, Science 237, 35–42.

    Google Scholar 

  • Clarke, B. L., 1988: Stoichiometric network analysis, Cell Biophys. 12, 237–253.

    Google Scholar 

  • Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content, Q. J. R. Meteorol. Soc. 96, 320–325.

    Google Scholar 

  • Happel, J. and Sellers, P. H., 1982: Multiple reaction mechanisms in catalysis, Ind. Eng. Chem. Fundam. 21, 67–76.

    Google Scholar 

  • Johnson, B. G. and Corio, P. L., 1993: Computer construction of reaction mechnisms, J. Phys. Chem. 97, 12100–12105.

    Google Scholar 

  • Johnston, H., 1971: Reduction of stratospheric ozone by nitrogen catalysts from supersonic transport exhaust, Science 173, 517–522.

    Google Scholar 

  • Johnston, H. and Kinnison, D., 1998: Methane photooxidation in the atmosphere: Contrast between two methods of analysis, J. Geophys. Res. 103, 21967–21984.

    Google Scholar 

  • Jucks, K. W., Johnson, D. G., Chance, K. V., Traub, W. A., Salawitch, R. J., and Stachnik, R. A., 1996: Ozone production and loss rate measurements in the middle stratosphere, J. Geophys. Res. 101, 28785–28792.

    Google Scholar 

  • Lary, D. J., 1997: Catalytic destruction of atmospheric ozone, J. Geophys. Res. 102, 21515–21526.

    Google Scholar 

  • Mavrovouniotis, M. L., 1992: Synthesis of reaction mechanisms consisting of reversible and irreversible steps. 2. Formalization and analysis of the synthesis algorithm, Ind. Eng. Chem. Res. 31, 1637–1653.

    Google Scholar 

  • Mavrovouniotis, M. L., Stephanopoulos, G., and Stephanopoulos, G., 1990: Computer-aided synthesis of biochemical pathways, Biotechnol. Bioeng. 36, 1119–1132.

    Google Scholar 

  • Milner, P. C., 1964: The possible mechanisms of complex reactions involving consecutive steps, J. Electrochem. Soc. 111, 228–232.

    Google Scholar 

  • Molina, M. J. and Rowland, F. S., 1974: Stratospheric sink for chlorofluoromethans: Chlorine atom catalyzed destruction of ozone, Nature 249, 810–814.

    Google Scholar 

  • Nevison, C. D., Solomon, S., and Gao, R. S., 1999: Buffering interactions in the modeled response of stratospheric O3 to increased NOx and Hox, J. Geophys. Res. 104, 3741–3754.

    Google Scholar 

  • Ross, M. N., Benbrook, J. R., Sheldon, W. R., Zittel, P. F., and McKenzie, D. L., 1997: Observations of stratospheric ozone depletion in rocket exhaust plumes, Nature 390, 62–64.

    Google Scholar 

  • Schuster, R. and Schuster, S., 1993: Refined algorithm and computer program for calculating all nonnegative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed, Comp. Appl. Biosci. 9, 79–85.

    Google Scholar 

  • Schuster, S., Danekar, T., and Fell, D. A., 1999: Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering, Trends Biotechnol. 17, 53–60.

    Google Scholar 

  • Schuster, S. and Hilgetag, C., 1994: On elementary flux modes in biochemical reaction systems at steady state, J. Biological Systems 2, 165–182.

    Google Scholar 

  • Seressiotis, A. and Bailey, J. E., 1988: MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways, Biotechnol. Bioeng. 31, 587–602.

    Google Scholar 

  • Stolarski, R. S. and Cicerone, R. J., 1974: Stratospheric chlorine: a possible sink for ozone, Can. J. Chem. 52, 1610–1615.

    Google Scholar 

  • Toumi, R., Jones, R. L., and Pyle, J. A., 1993: Stratospheric ozone depletion by ClONO2 photolysis, Nature 365, 37–39.

    Google Scholar 

  • von Hohenbalken, B., Clarke, B. L., and Lewis, J. E., 1987: Least distance methods for the frame of homogeneous equation systems, J. Comp. Appl. Math. 19, 231–241.

    Google Scholar 

  • Wennberg, P. O., Cohen, R. C., Stimpfle, R. M., Koplow, J. P., Anderson, J. G., Salawitch, R. J., Fahey, D. W., Woodbridge, E. L., Keim, E. R., Gao, R. S., Webster, C. R., May, R. D., Toohey, D.W., Avallone, L.M., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Chan, K. R., and Wofsy, S. C., 1994: Removal of stratospheric O3 by radicals: In situ measurements of OH, HO2, NO, ClO, and BrO, Science 266, 398–404.

    Google Scholar 

  • Wofsy, S. C., McElroy, M. B., and Yung, Y. L., 1975: The chemistry of atmospheric bromine, Geophys. Res. Lett. 2, 215–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, R. Determination of Dominant Pathways in Chemical Reaction Systems: An Algorithm and Its Application to Stratospheric Chemistry. Journal of Atmospheric Chemistry 41, 297–314 (2002). https://doi.org/10.1023/A:1014927730854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014927730854

Navigation