Advertisement

Periodica Mathematica Hungarica

, Volume 44, Issue 1, pp 63–73 | Cite as

On the order of elements in long minimal zero-sum sequences

  • Weidong Gao
  • Alfred Geroldinger
Article

Abstract

Let G be a finite abelian group and S = \(\prod\nolimits_{i = 1}^l \user1{g} _i \) a minimal zero-sum sequence in G of maximal length |S| = l. We study the order of the elements \(\user1{g}_1 , \ldots ,\user1{g}_\user1{l} \)

Finite abelian groups zero-sum sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [Alo99]
    N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7–29.Google Scholar
  2. [And97]
    D. D. Anderson, Factorization in integral domains, Marcel Dekker, 1997.Google Scholar
  3. [Car96]
    Y. Caro, Zero-sum problems-A survey, Discrete Math. 152 (1996), 93–113.Google Scholar
  4. [CFS99]
    S. Chapman, M. Freeze and W. Smith, Minimal zero sequences and the strong Davenport constant, Discrete Math. 203 (1999), 271–277.Google Scholar
  5. [CG97]
    S. Chapman and A. Geroldinger, Krull domains and monoids, their sets of lengths and associated combinatorial problems, in: Factorization in integral domains, Lecture Notes in Pure Appl. Math. vol. 189, Marcel Dekker, 1997, 73–112.Google Scholar
  6. [Gao00]
    W. Gao, On Davenport's constant of finite abelian groups with rank three, Discrete Math. 222 (2000), 111–124.Google Scholar
  7. [GG99]
    W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Periodica Math. Hungarica 38 (1999), 179–211.Google Scholar
  8. [GG00]
    W. Gao and A. Geroldinger, Systems of sets of lengths II, Abhandl. Math. Sem. Univ. Hamburg 70 (2000), 31–49.Google Scholar
  9. [GS92]
    A. Geroldinger and R. Schneider, On Davenport's constant, J. Comb. Th. Ser. A 61 (1992), 147–152.Google Scholar
  10. [GS96]
    A. Geroldinger and R. Schneider, The cross number of finite abelian groups III, Discrete Math. 150 (1996), 123–130.Google Scholar
  11. [Ols69a]
    J.E. Olson, A combinatorial problem on finite abelian groups I, J. Number Th. 1 (1969), 8–10.Google Scholar
  12. [Ols69b]
    J.E. Olson, A combinatorial problem on finite abelian groups II, J. Number Th. 1 (1969), 195–199.Google Scholar
  13. [vEB69]
    P. van Emde Boas, A combinatorial problem on finite abelian groups II, in: Reports ZW-1969–007, Math. Centre, Amsterdam, 1969.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Weidong Gao
    • 1
  • Alfred Geroldinger
    • 2
  1. 1.Department of Computer Science and TechnologyUniversity of Petroleum, BeijingChangping,BeijingP.R. China
  2. 2.Institut für MathematikKarl-FranzensUniversitätGrazAustria

Personalised recommendations