Transition Metal Chemistry

, Volume 27, Issue 3, pp 253–255 | Cite as

A calorimetric investigation into copper–arginine and copper–alanine solid state interactions

  • Robson F. de Farias
  • Leandro Martínez
  • Claudio Airoldi


Complexes of formula CuCl2 · 2arg and CuCl2 · 4ala (arg = arginine; ala = alanine) were prepared at room temperature by a solid state route. The metal–amino acid solid state interactions were studied by i.r. spectroscopy and solution calorimetry. For both complexes, participation of the carboxylate group as well as nitrogen in coordination are inferred, based on the i.r. data. For the copper–arginine compound, the calculated thermochemical parameters are: ΔrHmθ = −114.9 ± 1.42 and ΔfHmθ = −1608.3 ± 11.6 kJ mol−1. For copper–alanine compound, a complete set of thermochemical parameters were calculated: ΔrHmθ = −18.0 ± 0.9; ΔfHmθ = −2490.4 ± 4.3; ΔDHmθ = 597.2 ± 17.7; ΔMHmθ = 771.9 ± 18.7; ΔgHmθ = 627.1 ± 22.3 and 〈D〉 (Cu−L) = 156.8 ± 5.7 kJ mol−1. Based on ΔrHmθ and dissolution enthalpy values, a stronger intermolecular solid state interaction can be inferred for the arginine complex, than for the alanine one complex, probably due to the formation of intermolecular hydrogen bonds in the former.


Hydrogen Copper Enthalpy Hydrogen Bond Carboxylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.H. Garret and C.M. Grisham, Biochemistry, Saunders, New York, 1995.Google Scholar
  2. 2.
    J.J.R.F. da Silva and R.J.P. Williams, The Biological Chemistry of the Elements, Oxford University Press, London, 1991.Google Scholar
  3. 3.
    R.F. de Farias, J. Scatena Jr. and C. Airoldi, J. Inorg. Biochem., 73, 253 (1999).Google Scholar
  4. 4.
    R.F. de Farias and C. Airoldi, J. Inorg. Biochem., 76, 273 (1999).Google Scholar
  5. 5.
    R.F. de Farias, L.M. Nunes and C. Airoldi, J. Thermal Anal. Cal., accepted for publication.Google Scholar
  6. 6.
    R.F. de Farias, O.A. de Oliveira, J.V. de Medeiros and C. Airoldi, Thermochim. Acta, 328, 241 (1999).Google Scholar
  7. 7.
    R.F. de Farias, G.C. Petrucelli and C. Airoldi, Thermochim. Acta, accepted for publication.Google Scholar
  8. 8.
    R.F. de Farias and L.M. Nunes, Transition Met. Chem., in press.Google Scholar
  9. 9.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edit., Wiley, New York, 1986.Google Scholar
  10. 10.
    P. Melnikov, P.P. Corbi, C.D. Aguila, M.A. Zacharias, M. Cavicchioli and A.C. Massabni, J. Alloys Comp., 307, 179 (2000).Google Scholar
  11. 11.
    CRC Handbook of Chemistry and Physicis, 79th edit., CRC Press, 1998.Google Scholar
  12. 12.
    J.B. Pedley, R.D. Muylor and S.P. Kirby, Thermochemical Data of Organic Compounds, 2nd edit., Chapman and Hall, London, 1992.Google Scholar
  13. 13.
    S.N. Ngauv, R. Sabbah and M. Laffite, Thermochim. Acta, 20, 371 (1997).Google Scholar
  14. 14.
    X.W. Yang, J.R. Liu, S.L. Gao, Y.D. Hou and Q.Z. Shi, Thermochim. Acta, 329, 109 (1999).Google Scholar
  15. 15.
    R.F. de Farias and O.A. de Oliveira, Quím. Nova, 19, 100 (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Robson F. de Farias
    • 1
  • Leandro Martínez
    • 2
  • Claudio Airoldi
    • 2
  1. 1.Departamento de QuímicaUniversidade Federal de Roraima, UFRRBoa Vista, RoraimaBrazil
  2. 2.Instituto de QuímicaUniversidade Estadual de Campinas, UnicampCampinas, São PauloBrazil

Personalised recommendations