Statistics and Computing

, Volume 12, Issue 2, pp 125–134 | Cite as

Simulation-based inference for simultaneous processes on regular lattices

  • Xavier De Luna
  • Marc G. Genton


The article proposes a simulation-based inferential method for simultaneous processes defined on a regular lattice. The focus is on spatio-temporal processes with a simultaneous component, that is such that contemporaneous spatial neighbors are potential explanatory variables in the model. The new method has the advantage of being simpler to implement than maximum likelihood and allows us to propose a robust estimator. We give asymptotic properties, present a Monte Carlo study and an illustrative example.

indirect inference quadrant process robust estimation spatio-temporal process Yule-Walker estimator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali M.M. 1979. Analysis of stationary spatial-temporal processes: Estimation and prediction. Biometrika 66: 513-518.Google Scholar
  2. Brännäs K. and de Luna X. 1998. Generalized method of moment and indirect estimation of the ARasMA model. Computational Statistics 13: 485-494.Google Scholar
  3. Cressie N. 1993. Statistics for Spatial Data. John Wiley & Sons, New York.Google Scholar
  4. Croux C. and Rousseeuw P.J. 1992. Time-efficient algorithms for two highly robust estimators of scale. Computational Statistics 1: 411-428.Google Scholar
  5. de Luna X. and Genton M.G. 2001. Robust simulation-based estimation of ARMA models. Journal of Computational and Graphical Statistics 10: 370-387.Google Scholar
  6. Genton M.G. and de Luna X. 2000. Robust simulation-based estimation. Statistics and Probability Letters 48: 253-259.Google Scholar
  7. Gouriéroux C. and Monfort A. 1996. Simulation-Based Econometric Methods. Oxford University Press, Oxford.Google Scholar
  8. Gouriéroux C., Monfort A., and Renault A.E. 1993. Indirect inference. Journal of Applied Econometrics 8: 85-118.Google Scholar
  9. Guyon X. 1982. Parameter estimation for a stationary process on a d-dimensional lattice. Biometrika 69: 95-105.Google Scholar
  10. Ha E. and Newton H.J. 1993. The bias of estimators of causal spatial autoregressive processes. Biometrika 80: 242-245Google Scholar
  11. Haining R. 1990. Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press, Cambridge.Google Scholar
  12. Hampel F.R. 1974. The influence curve and its role in robust estimation. Journal of the American Statistical Association 69: 383-393.Google Scholar
  13. Hampel F.R., Ronchetti E.M., Rousseeuw P.J., and Stahel W.A. 1986. Robust Statistics, the Approach Based on Influence Functions. John Wiley & Sons, New York.Google Scholar
  14. Heuvelink G.B.M. 1998. Error Propagation in Environmental Modelling with GIS. Taylor & Francis Inc. Bristol.Google Scholar
  15. Huber P.J. 1981. Robust Statistics. John Wiley & Sons, New-York.Google Scholar
  16. Huber P.J. 1984. Finite sample breakdown point of M-and P-estimators. The Annals of Statistics 12: 119-126.Google Scholar
  17. Kiiveri H.T. 1992. Fitting spatial correlation models: Approximating a likelihood approximation. Australian Journal of Statistics 34: 497-512.Google Scholar
  18. Künsch H. 1984. Infinitesimal robustness for autoregressive processes. Annals of Statistics 12: 843-863.Google Scholar
  19. Lucas A. 1997. Asymptotic robustness of least median of squares for autoregressions with additive outliers. Communication in Statistics, Theory and Methods 26: 2363-2380.Google Scholar
  20. Ma Y. and Genton M.G. 2000. Highly robust estimation of the auto-covariance function. Journal of Time Series Analysis 21: 663-684.Google Scholar
  21. Martin R.D. and Yohai V.J. 1986. Influence functionals for time series (with discussion). The Annals of Statistics 14: 781-855.Google Scholar
  22. Rosenblatt M. 1986. Parameter estimation for finite-parameter stationary random fields. Journal of Applied Probability A23: 311-318.Google Scholar
  23. Rousseeuw P.J. and Croux C. 1992. Explicit scale estimators with high breakdown point. In: Dodge Y. (Ed.), L 1 Statistical Analyses and Related Methods. pp. 77-92.Google Scholar
  24. Rousseeuw P.J. and Croux C. 1993. Alternatives to the median absolute deviation. Journal of the American Statistical Association 88: 1273-1283.Google Scholar
  25. Tjøstheim D. 1978. Statistical spatial series modeling. Advances in Applied Probability 10: 130-154.Google Scholar
  26. Whittle P. 1954. On stationary processes in the plane. Biometrika 41: 434-449.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Xavier De Luna
  • Marc G. Genton

There are no affiliations available

Personalised recommendations