Advertisement

Journal of Applied Electrochemistry

, Volume 32, Issue 2, pp 173–178 | Cite as

Composition dependence of the oxygen-evolution reaction rate on Ir x Ti1−xO2 mixed-oxide electrodes

  • Kazuki EndoEmail author
  • Yasushi Katayama
  • Takashi Miura
  • Tomiya Kishi
Article

Abstract

Mudcrack-free oxide films of Ir x Ti1−xO2 (0 < x ≤ 1) on titanium substrates were obtained, and the effects of the oxide composition on the rate of oxygen-evolution reaction were investigated. At x ≥ 0.6, Ir-rich grains appear on the mudcrack-free surface. In the purely single-phase region (0 < x ≤ 0.5), the pseudo-capacitive charge is proportional to the surface composition, xs, and the exchange-current density for the oxygen-evolution reaction increases linearly with xs at 0.2 ≤ xs ≤ 0.5, with an extrapolated intercept at xs ∼ 0.15, below which the oxides are inactive.

IrO2 mixed oxide oxygen evolution reaction rate TiO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Trasatti and G. Lodi, In Electrodes of Conductive Metallic Oxides Parts A, S. Trasatti (Ed.) Elsevier, Amsterdam, 1980 p. 301.Google Scholar
  2. 2.
    S. Trasatti, Electrochim. Acta 36 (1991) 225.Google Scholar
  3. 3.
    A. Benedetti, P. Riello, G. Battaglin, A. De Battisti and A. Barbieri, J. Electroanal. Chem. 376 (1994) 195.Google Scholar
  4. 4.
    R. Otogawa, M. Morimitsu and M. Matsunaga, Electrochim. Acta 44 (1998) 1509.Google Scholar
  5. 5.
    C. Comninellis and G.P. Vercesi, J. Appl. Electrochem. 21 (1991) 335.Google Scholar
  6. 6.
    Y.E. Roginskaya and O.V. Morozova, Electrochim. Acta 40 (1995) 817.Google Scholar
  7. 7.
    S. Ardizzone, A. Carugati, G. Lodi and S. Trasatti, J. Electrochem. Soc. 129 (1982) 1689.Google Scholar
  8. 8.
    K. Tsukada, K. Kameyama, K. Yahikozawa and Y. Takasu, Denki Kagaku (currently Electrochemistry), 61 (1993) 435 (in Japanese).Google Scholar
  9. 9.
    M.K. Reser (Ed.), Phase Diagrams for Ceramists (American Ceramic Society, Columbus, 1969), Figure 2180.Google Scholar
  10. 10.
    A. de Battisti, A. Barbieri, A. Giatti, G. Battaglin, S. Daolio and A.B. Boscoletto, J. Mater. Chem. 1 (1991) 191.Google Scholar
  11. 11.
    L.D. Burke and D.P. Whelan, J. Electroanal. Chem. 124 (1981) 333.Google Scholar
  12. 12.
    A. de O-Sousa, M.A.S. da Silva, S.A.S. Machado, L.A. Avaca and P. de L-Neto, Electrochim. Acta 45 (2000) 4467.Google Scholar
  13. 13.
    S. Ardizzone, G. Fregonara and S. Trasatti Electrochim. Acta 35 (1990) 263.Google Scholar
  14. 14.
    L.A. da Silva, V.A. Alves, M.A.P. da Silva, S. Trasatti and J.F.C. Boodts, Can. J. Chem. 75 (1997) 1483.Google Scholar
  15. 15.
    J. Kristó f, J. Liszi, P. Szabó, A. Barbieri and A. de Battisti, J. Appl. Electrochem. 23 (1993) 615.Google Scholar
  16. 16.
    A. Damjanovic, A. Dey and J.O'M. Bockris, Electrochim. Acta 11 (1966) 791.Google Scholar
  17. 17.
    J.O'M. Bockris and T. Otagawa, J. Phys. Chem. 87 (1983) 2960.Google Scholar
  18. 18.
    L.A. da Silva, V.A. Alves, S. Trasatti and J.F.C. Boodts, J. Electroanal. Chem. 427 (1997) 97.Google Scholar
  19. 19.
    N. Furuya and S. Motoo, J. Electroanal. Chem. 72 (1976) 165.Google Scholar
  20. 20.
    S. Motoo, Denki Kagaku (currently Electrochemistry), 48 (1980) 328 (in Japanese).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Kazuki Endo
    • 1
    Email author
  • Yasushi Katayama
    • 1
  • Takashi Miura
    • 1
  • Tomiya Kishi
    • 1
  1. 1.Faculty of Science and TechnologyKeio UniversityKohoku-ku, YokohamaJapan

Personalised recommendations