Advertisement

Journal of Applied Electrochemistry

, Volume 32, Issue 2, pp 211–216 | Cite as

Catalysts for oxygen reduction from heat-treated carbon-supported iron phenantroline complexes

  • M. BronEmail author
  • S. Fiechter
  • M. Hilgendorff
  • P. Bogdanoff
Article

Abstract

Oxygen reduction catalysts were prepared by heat treatment of carbon supported iron phenantroline complexes in Ar or NH3. The optimum carbon black loading with iron was found to be 2%, the optimum heat treatment temperature was about 800 °C. X-ray diffractogramms and TEM showed the occurrence of crystalline species at higher catalyst loadings; however, these species seem not to contribute significantly to the catalytic activity. From the slope of the Koutecky–Levich plot, an average number of 3.7 electrons transferred per oxygen molecule was calculated, which is consistent with RRDE data. A Tafel slope of about 120 mV (decade)−1 indicates that the first electron transfer is rate determining.

carbon catalyst iron oxygen reduction PEM-FC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Scherson, A.A. Tanaka, S.L. Gupta, D. Tyrk, C. Fierro, R. Holze and E.B. Yeager, Electrochim. Acta 31 (1986) 1247.Google Scholar
  2. 2.
    K. Wiesener, Electrochim. Acta 31 (1986) 1073.Google Scholar
  3. 3.
    J.A.R. van Veen, H.A. Colijn and J.F. van Baar, Electrochim.Acta 33 (1988) 801.Google Scholar
  4. 4.
    G. Lalande, R. Côté, G. Tamizhmani, D. Guay, J.P. Dodelet, L. Dignard-Bailey, L.T. Weng and P. Bertrand, Electrochim. Acta 40 (1995) 2635.Google Scholar
  5. 5.
    A. Widelöv, Electrochim. Acta 38 (1993) 2493.Google Scholar
  6. 6.
    G. Lalande, G. Faubert, R. Côté, D. Guay, J.P. Dodelet, L.T. Weng and P. Bertrand, J. Power Sources 61 (1996) 227.Google Scholar
  7. 7.
    S.L. Gojkovic, S. Gupta and R.F. Savinell, J. Electrochm. Soc. 145 (1998) 3493.Google Scholar
  8. 8.
    S.L. Gojkovic, S. Gupta and R.F. Savinell, J. Electroanal. Chem. 462 (1999) 63.Google Scholar
  9. 9.
    S.L. Gojkovic, S. Gupta and R.F. Savinell, Electrochim. Acta 45 (1999) 889.Google Scholar
  10. 10.
    E. Claude, T. Addou, J-M. Latour and P. Aldebert, J. Appl.Electrochem. 28 (1998) 57.Google Scholar
  11. 11.
    G. Faubert, G. Lalande, R. Côté, D. Guay, J.P. Dodelet, L.T. Weng, P. Bertrand and G. Dénés, Electrochim. Acta 41 (1996) 1689.Google Scholar
  12. 12.
    R. Jiang and D. Chu, J. Electrochem. Soc. 147 (2000) 4605.Google Scholar
  13. 13.
    G.Q. Sun, J.T. Wang and R.F. Savinell, J. Appl. Electrochem. 28 (1998) 1087.Google Scholar
  14. 14.
    I.T. Bae, D.A. Tyrk and D.A. Scherson, J. Phys. Chem. B 102 (1998) 4114.Google Scholar
  15. 15.
    G. Faubert, R. Côté, D. Guay, J.P. Dodelet, G. Dénés and P. Bertrand, Electrochim. Acta 43 (1998) 341.Google Scholar
  16. 16.
    M.C. Martins Alves, J.P. Dodelet, D. Guay, M. Ladouceur and G. Tourillon, J. Phys. Chem. 96 (1992) 10898.Google Scholar
  17. 17.
    A.L. Bouwkamp-Wijnoltz, W. Visscher and J.A.R. van Veen, Electrochim. Acta 43 (1998) 3141.Google Scholar
  18. 18.
    B. van Wingerden, J.A.R. van Veen and C.T.J. Mensch, J. Chem. Soc. FaradayTrans. I 84 (1988) 65.Google Scholar
  19. 19.
    R.W. Joyner, J.A.R. van Veen and W.M.H. Sachtler, J. Chem. Soc. FaradayTrans. I 78 (1982) 1021.Google Scholar
  20. 20.
    A.L. Bouwkamp-Wijnoltz, W, Visscher, J.A.R. van Veen and S.C. Tang, Electrochim. Acta 45 (1999) 379.Google Scholar
  21. 21.
    C. Fabjan, G. Frithum and H. Hartl, Ber. Bunsenges. Phys. Chem. 94 (1990) 937.Google Scholar
  22. 22.
    D. Ohms, S. Herzog, R. Franke, V. Neumann, K. Wiesener, S. Gamburcev, A. Kaisheva and I. Iliev, J. Power Sources 38 (1992) 327.Google Scholar
  23. 23.
    S. Gupta, D. Tyrk, I. Bae, W. Aldred and E. Yeager, J. Appl. Electrochem. 19 (1989) 19.Google Scholar
  24. 24.
    W. Seeliger and A. Hamnett, Electrochim. Acta 37 (1992) 763.Google Scholar
  25. 25.
    R. Côté, G. Lalande, D. Guay and J.P. Dodelet, J. Electrochem. Soc. 145 (1998) 2411.Google Scholar
  26. 26.
    G. Lalande, R. Côté, D. Guay, J.P. Dodelet, L.T. Weng and P. Bertrand, Electrochim. Acta 42 (1997) 1379.Google Scholar
  27. 27.
    G. Faubert, R. Côté, D. Guay, J.P. Dodelet, G. Dénés, C. Poleunis and P. Bertrand, Electrochim. Acta 43 (1998) 1969.Google Scholar
  28. 28.
    G. Wei, J.S. Wainright and R.F. Savinell, J. New Mat. Electrochem. Systems 3 (2000) 121.Google Scholar
  29. 29.
    J. Fournier, G. Lalande, R. Côté, D. Guay and J.P. Dodelet, J. Electrochem. Soc. 144 (1997) 218.Google Scholar
  30. 30.
    H. Wang, R. Côté, G. Faubert, D. Guay and J.P. Dodelet, J. Phys. Chem. B 103 (1999) 2042.Google Scholar
  31. 31.
    P. He, M. Lefëvre, G. Faubert and J.P. Dodelet, J. New. Mat. Electrochem. Systems 2 (1999) 243.Google Scholar
  32. 32.
    G. Faubert, R. Côté, J.P. Dodelet, M. Lefëvre and P. Bertrand, Electrochim. Acta 44 (1999) 2589.Google Scholar
  33. 33.
    M. Lefëvre, J.P. Dodelet and P. Bertrand, J. Phys. Chem. B 104 (2000) 11238.Google Scholar
  34. 34.
    C. Gerthesen, H.O. Kneser and H. Vogel, ‘Physik’, 15th edn. (Springer, Heidelberg 1986).Google Scholar
  35. 35.
    S. Gottesfeld, I.D. Raistrick and S. Srinivasan, J. Electrochem. Soc. 134 (1987) 1455.Google Scholar
  36. 36.
    R.C. Weast (Ed.), ‘CRC Handbook of Chemistry and Physics’, 68th edn. (CRC Press, Boca Ratton, FA, 1987). 216Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Bron
    • 1
    Email author
  • S. Fiechter
    • 1
  • M. Hilgendorff
    • 1
  • P. Bogdanoff
    • 1
  1. 1.Department Solar Energetics, SE5Hahn-Meitner-Institut BerlinBerlinGermany

Personalised recommendations