Philosophical Studies

, Volume 107, Issue 2, pp 129–142 | Cite as

Symmetries and Asymmetries in Evidential Support

  • Ellery Eells
  • Branden Fitelson


Several forms of symmetry in degrees of evidential support areconsidered. Some of these symmetries are shown not to hold in general. This has implications for the adequacy of many measures of degree ofevidential support that have been proposed and defended in the philosophical literature.


Evidential Support Philosophical Literature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carnap, R. (1962): Logical Foundations of Probability, 2nd edn., Chicago: University of Chicago Press.Google Scholar
  2. Chihara, C. and Gillies, D. (1988): 'An Interchange on the Popper-Miller Argument', Philosophical Studies 54, 1-8.Google Scholar
  3. Christensen, D. (1999): 'Measuring Confirmation', Journal of Philosophy XCVI, 437-461.Google Scholar
  4. Earman, J. (1992): Bayes or Bust: A Critical Examination of Bayesian Confirmation Theory, Cambridge: MIT Press.Google Scholar
  5. Eells, E. (1982): Rational Decision and Causality, Cambridge: Cambridge University Press.Google Scholar
  6. Eells, E. (1985): 'Problems of Old Evidence', Pacific Philosophical Quarterly 66, 283-302.Google Scholar
  7. Eells, E. (2000): 'Review: The Foundations of Causal Decision Theory, by James M. Joyce', The British Journal for the Philosophy of Science 51, 893-900.Google Scholar
  8. Eells, E. and Fitelson, B. (2000): 'Measuring Confirmation and Evidence', Journal of Philosophy XCVII(12), 663-672.Google Scholar
  9. Festa, R. (1999): 'Bayesian Confirmation', in M. Galavotti and A. Pagnini (eds.), Experience, Reality, and Scientific Explanation (pp. 55-87), Dordrecht: Kluwer Academic Publishers.Google Scholar
  10. Fitelson, B. (1999): 'The Plurality of Bayesian Measures of Confirmation and the Problem of Measure Sensitivity', Philosophy of Science 66, S362-S378.Google Scholar
  11. Fitelson, B. (2001a): 'A Bayesian Account of Independent Evidence with Applications', Philosophy of Science (to appear).Google Scholar
  12. Fitelson, B. (2001b): Studies in Bayesian Confirmation Theory. Ph.D. thesis, University of Wisconsin, Madison.Google Scholar
  13. Gillies, D. (1986): 'In Defense of the Popper-Miller Argument', Philosophy of Science 53, 110-113.Google Scholar
  14. Good, I. (1984): 'The Best Explicatum for Weight of Evidence', Journal of Statistical Computation and Simulation 19, 294-299.Google Scholar
  15. Good, I. (1987): 'A Reinstatement, in Response to Gillies, of Redhead's Argument in Support of Induction', Philosophy of Science 54, 470-472.Google Scholar
  16. Heckerman, D. (1988): 'An Axiomatic Framework for Belief Updates', in L. Kanal and J. Lemmer (eds.), Uncertainty in Artificial Intelligence 2 (pp. 11-22), New York: Elsevier Science Publishers.Google Scholar
  17. Horwich, P. (1982): Probability and Evidence, Cambridge: Cambridge University Press.Google Scholar
  18. Jeffrey, R. (1992): Probability and the Art of Judgment, Cambridge: Cambridge University Press.Google Scholar
  19. Joyce, J. (1999): The Foundations of Causal Decision Theory, Cambridge: Cambridge University Press.Google Scholar
  20. Kemeny, J. and Oppenheim, P.: 1952, 'Degrees of Factual Support', Philosophy of Science 19, 307-324.Google Scholar
  21. Keynes, J. (1921): A Treatise on Probability, London: Macmillan.Google Scholar
  22. Kuipers, T. (2000): From Instrumentalism to Constructive Realism, Dordrecht: Kluwer.Google Scholar
  23. Kyburg, H. (1983): 'Recent Work in Inductive Logic', in T. Machan and K. Lucey (eds.), Recent Work in Philosophy (pp. 87-150), Lanham: Rowman & Allanheld.Google Scholar
  24. Mackie, J. (1969): 'The Relevance Criterion of Confirmation', The British Journal for the Philosophy of Science 20, 27-40.Google Scholar
  25. Milne, P. (1995): 'A Bayesian Defence of Popperian Science?', Analysis 55, 213-215.Google Scholar
  26. Milne, P. (1996): 'log[P(h/eb)/P(h/b)] is the One True Measure of Confirmation', Philosophy of Science 63, 21-26.Google Scholar
  27. Mortimer, H. (1988): The Logic of Induction, Paramus: Prentice Hall.Google Scholar
  28. Nozick, R. (1981): Philosophical Explanations, Cambridge: Harvard University Press.Google Scholar
  29. Pearl, J. (1988): Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San Francisco: Morgan Kauffman.Google Scholar
  30. Pollard, S. (1999): 'Milne's Measure of Confirmation', Analysis 59, 335-337.Google Scholar
  31. Rosenkrantz, R. (1994): 'Bayesian Confirmation: Paradise Regained', The British Journal for the Philosophy of Science 45, 467-476.Google Scholar
  32. Schlesinger, G. (1995): 'Measuring Degrees of Confirmation', Analysis 55, 208-212.Google Scholar
  33. Schum, D. (1994): The Evidential Foundations of Probabilistic Reasoning, New York: John Wiley & Sons.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ellery Eells
    • 1
  • Branden Fitelson
    • 1
  1. 1.Department of PhilosophyUniversity of Wisconsin, MadisonMadisonUSA

Personalised recommendations