Journal of Applied Electrochemistry

, Volume 32, Issue 2, pp 225–230 | Cite as

Initial stages of tin electrodeposition from sulfate baths in the presence of gluconate

  • J. Torrent-Burgués
  • E. Guaus
  • F. Sanz


Tin electrodeposition in its initial stages in acid sulfate/gluconate baths was studied with varying tin and gluconate concentrations using potential-controlled electrochemical techniques. The deposit morphology was observed by scanning electron microscopy (SEM). A comparison with tin electrodeposition from acid sulfate baths in the absence of gluconate was also carried out. Use of a highly acidic bath leads to nonuniform deposits, even in the presence of gluconate; at pH 4 deposits are uniform, brilliant and suitable for finishing applications. Tin crystallites have a well defined morphology which depends on bath agitation conditions. In the absence of agitation, the crystallites have the same tetragonal shape as in a sulfate bath without gluconate.

deposit morphology gluconate nucleation sulfate bath tin electrodeposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.N. Strafford and A. Reed, ‘Coatings and Surface Treatment for Corrosion and Wear Resistance’ (1984), p. 74.Google Scholar
  2. 2.
    R. Sabitha, Malathy Pushpavanam, M. Mahesh Sujatha and T. Vasudevan, Trans. Met. Finish. Ass. of India 5 (1996) 267.Google Scholar
  3. 3.
    M. Degrez and R. Winand, Conference: Second Congress Metallurgy and Uses, Pub. Cobalt Development Institute (1986), p. 432.Google Scholar
  4. 4.
    K.G. Sheppard, Abstracts of the 190th Meeting of The Electrochemical Society, Vol. 96-2, no. 306 (The Electrochemical Society, Pennington, NJ, 1996), p. 395.Google Scholar
  5. 5.
    K. Othmer, ‘Encyclopedia of Chemical Technology’, Vol. 24 (4th ed. Wiley, New York, 1997), p. 105.Google Scholar
  6. 6.
    D.J. Maykuth and W.B. Hampshire, ‘ASM Metals Handbook’, Vol. 13, (9th edn, ASM Publications, 1998), p. 770.Google Scholar
  7. 7.
    B.N. Stirrup and N.A. Hampson, J. Electroanal. Chem. 5 (1997)429.Google Scholar
  8. 8.
    M.I. Smirnov, K.M. Tyutina and A.N. Popov, Russian J. Electrochem. 31 (1995) 498.Google Scholar
  9. 9.
    V.S. Vasantha, Malathy Pushpavanam and V.S. Muralidharan, Met. Finish. 93 (1995) 16.Google Scholar
  10. 10.
    T. Sonoda, H. Nawafume and S. Mizumoto, Plat. Surf. Finish. 79 (1992) 78.Google Scholar
  11. 11.
    A. Aragon, M.G. Figueroa, R.E. Gana and J.H. Zagal, J. Appl. Electrochem. 22 (1992) 558.Google Scholar
  12. 12.
    N. Kaneko, N. Shinohara and H. Nezu, Electrochim. Acta 37 (1992) 2403.Google Scholar
  13. 13.
    G.S. Tzeng, S.H. Lin, Y.Y. Wang and C.C. Wan, J. Appl. Electrochem. 26 (1996) 419.Google Scholar
  14. 14.
    V.S. Vasantha, Malathy Pushpavanam, P. Kanaraj and V.S. Muralidharan, Trans. Inst. Met. Finish. 74 (1996) 28.Google Scholar
  15. 15.
    Malathy Pushpavanam, M. Mahesh Sujatha and T. Vasnderan, Trans. Met. Finish. Ass., India 5 (1996) 267.Google Scholar
  16. 16.
    S.S. Abd el Rehim, S.A. Refaey, G. Schwitzgebel, F. Taha and M.B. Saleh, J. Appl. Electrochem. 26 (1996) 413.Google Scholar
  17. 17.
    C.J. Van Velzen, M. Sluyters-Rehbach and J.H. Sluyters, Electrochim. Acta 32 (1987) 815.Google Scholar
  18. 18.
    J. Wijenberg, ‘Initial Stages of Electrochemical Phase Formation’, PhD thesis (University of Utrech, The Netherlands, 1991), chapter6.Google Scholar
  19. 19.
    S.A.M. Refaey, Appl. Surf. Sci. 157 (2000) 199.Google Scholar
  20. 20.
    E. Gomez, E. Guaus, F. Sanz and E. Valles, J. Electroanal. Chem. 465 (1999) 63.Google Scholar
  21. 21.
    T.N. Maksin, B.Z. Zmbova and D.S. Veselinovic, J. Serb. Chem. Soc. 56 (1991) 337.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Torrent-Burgués
    • 1
  • E. Guaus
    • 1
  • F. Sanz
    • 2
  1. 1.Dep. D’Enginyeria QuímicaUniv. Politècnica de CatalunyaTerrassaSpain
  2. 2.Dep. de Química FísicaUniv. de BarcelonaBarcelonaSpain

Personalised recommendations