Skip to main content
Log in

Hydrogel-Actuated Capacitive Transducer for Wireless Biosensors

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This article introduces a new type of transducer that combines capacitive pressure sensing techniques with biosensitive hydrogels, using an adaptable MEMS fabrication platform. Hydrogel swelling in response to analyte concentration exerts contact pressure on a deformable conducting diaphragm, producing a capacitance change. Initial results are reported for testing device feasibility. Uncrosslinked PHEMA hydrogel was tested for swelling pressure in response to calcium nitrate tetrahydrate. Diaphragm deflection due to applied air pressure was measured on NiTi-based diaphragms and compared with hydrogel-actuated deflections of the same diaphragms to determine the pressure generating characteristics of the hydrogel. The PHEMA sample exhibited greatest sensitivity in the concentration range 0–0.5 M, generating an average of 110 mN/M/μl. The device was incorporated into a passive LC resonant circuit. Resonance frequency was measured as a function of applied air pressure, in the range of pressures generated by hydrogel swelling. Resonance frequency shifted from 66 MHz to 33 MHz over the pressure range 0–32 kPa, corresponding to an estimated average sensitivity of 66 Hz per μmol of calcium nitrate tetrahydrate over the range 0–0.5 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Arquint, A. van den Berg, D.J. Strike, N.F. de Rooij, and M. Koudelka-Hep, Journal of Biomaterials Applications 7, 47 (1992).

    Google Scholar 

  • D.J. Beebe et al., Nature 404, 588 (2000).

    Google Scholar 

  • L. Brannon-Peppas and N.A. Peppas, Chemical Engineering Science 46, 715 (1991).

    Google Scholar 

  • S. Chatzandroulis, D. Tsoukalas, and P.A. Neukomm, Journal of Microelectromechanical Systems 9, 18 (2000).

    Google Scholar 

  • C.C. Collins, IEEE Transactions on Bio-Medical Engineering BME-14, 74 (1967).

    Google Scholar 

  • P. Eun-Chul, Y. Jun-Bo, and Y. Euisik, Japanese Journal of Applied Physics 37, 7124 (1998).

    Google Scholar 

  • W. Gombotz and A. Hoffman, in Hydrogels in Medicine and Pharmacy Volume I, edited by N.A. Peppas (CRC Press, Boca Raton, 1986), p. 95.

    Google Scholar 

  • D.E. Gregonis, C.M. Chen, and J.D. Andrade, in Hydrogels for medical and related applications, edited by J.D. Andrade (American Chemical Society, Washington, 1976), p. 89.

    Google Scholar 

  • C.A. Grimes, D. Kouzoudis, K.G. Ong, and R. Crump, Biomedical Microdevices 2, 51-60 (1999).

    Google Scholar 

  • C. Guoping, Y. Imanishi, and Y. Ito, Langmuir 14, 6610 (1998).

    Google Scholar 

  • M. Husak, Journal of Micromechanics and Microengineering 7, 173 (1997).

    Google Scholar 

  • A. Kikuchi et al., Analytical Chemistry 68, 823 (1996).

    Google Scholar 

  • S. Lee and K. Park, in Hydrogels and biodegradable polymers for bioapplications, edited by R. Ottenbrite (American Chemical Society, Washington, DC, 1996), p. 1.

    Google Scholar 

  • T. Miyata, N. Asami, and T. Uragami, Nature 399, 766 (1999).

    Google Scholar 

  • K. O'Driscoll, A. Kapoulas, A. Albisser, and R. Gander, in Hydrogels for medical and related applications, edited by J. Andrade (American Chemical Society, Washington, DC, 1976), p. 162.

    Google Scholar 

  • H. Park and K. Park, in Hydrogels and Biodegradable Polymers for Bioapplications, edited by R.M. Ottenbrite, S.J. Huang, and K. Park (American Chemical Society, Washington, DC 1996), p. 1.

    Google Scholar 

  • B. Puers, A. Vandenbossche, E. Peeters, and W. Sansen, Sensors and Actuators A 23, 944 (1990).

    Google Scholar 

  • B. Ratner and A. Hoffman, in Hydrogels for medical and related applications, edited by J. Andrade (American Chemical Society, Washington, DC, 1976), pp. 1-36.

    Google Scholar 

  • L. Rosengren, P. Rangsten, Y. Backlund, and B. Hok, Sensors and Actuators A 43, 55 (1994).

    Google Scholar 

  • T. Sawai, H. Shinohara, Y. Ikariyama, and M. Aizawa, Journal of Electroanalytical Chemistry 297, 399 (1991).

    Google Scholar 

  • T. Schalkhammer, C. Lobmaier, F. Pittner, A. Leitner, H. Brunner, and F.R. Aussenegg, Sensors and Actuators B 24-25, 166 (1995).

    Google Scholar 

  • U. Schnakenberg, P. Walter, G. vom Bogel, C. Kruger, H.C. Ludtke-Handjery, H.A. Richter, W. Specht, P. Ruokonen, and W. Mokwa, Sensors and Actuators A 85, 287 (2000).

    Google Scholar 

  • N.F. Sheppard, Jr., M.J. Lesho, P. McNally, and A.S. Francomacaro, Sensors and Actuators B 28, 95 (1995).

    Google Scholar 

  • R. Siegel and B. Firestone, Macromolecules 21, 3254 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strong, Z.A., Wang, A.W. & McConaghy, C.F. Hydrogel-Actuated Capacitive Transducer for Wireless Biosensors. Biomedical Microdevices 4, 97–103 (2002). https://doi.org/10.1023/A:1014627029818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014627029818

Navigation