Skip to main content
Log in

Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Time series measurements of temperature at 15 depths and profiles of temperature-gradient microstructure were obtained during a period with strong wind forcing and subsequent calm in Mono Lake, California. The wind forcing increased the amplitude of basin-scale internal waves and energy at all wave frequencies relative to the calm period. Rates of dissipation of turbulent kinetic energy, ∈, were high (∈ > 10−6 m2 s−3) at the top of the pycnocline at both an inshore and an offshore site on a day when winds reached 10 m s−1 and on the following two days at an inshore site (∈ > 10−7 m2 s−3). The enhanced turbulence occurred at the depth of a subsurface temperature maximum (z TM) and coincidentally with elevated concentrations of NH4, reduced concentrations of chlorophyll a and particulate carbon, and increased abundance of the macrozooplankter Artemia monica. The NH4 at z TM was more dispersed and of lower concentration inshore than offshore and indicated greater turbulent transport inshore. Over the course of 4 days, chlorophyll a concentrations increased in the upper mixed layer, and C:N and C:Chl ratios decreased. Offshore, the change in C:N ratio indicated a relaxation of moderate nutrient deficiency. We hypothesize that excretion by A. monica and turbulent transport of the NH4 from the subsurface temperature maximum led to improved physiological status of phytoplankton in the upper mixed layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge, A. L., T. J. Cowles, S. MacIntyre, J. E. B. Rines, P. L. Donaghay, C. F. Greenlaw, D. V. Holliday, M. M. Dekshenieks, J. M. Sullivan & J. R. V. Zaneveld, in press. Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Mar. Ecol. Prog. Ser.

  • Coulter, G. W. & R. H. Spigel, 1991. Hydrodynamics. Chapter 3 In Coulter, G.W. (ed.), Lake Tanganyika and its Life. Oxford Univ. Press: 49–75.

  • Cowles, T. J. & R. A. Desiderio, 1993. Resolution of biological microstructure through in situ fluorescence emission spectra. Oceanography 6: 105–111.

    Google Scholar 

  • Cullen, J. J. & M. R. Lewis, 1988. The kinetics of algal photoadaptation in the context of vertical mixing. J. Plankton Res. 10: 1039–1063.

    Google Scholar 

  • Dade, W. B., 1993. Near-bed turbulence and hydrodynamic control of diffusional mass transfer at the sea floor. Limnol. Oceanogr. 38: 52–69.

    Google Scholar 

  • DeSilva, I. P. D., J. Imberger & G. N. Ivey, 1997. Localized mixing due to a breaking internal wave ray at a sloping bed. J. Fluid Mech. 350: 1–27.

    Google Scholar 

  • Dillon, T. M. & D. R. Caldwell, 1980. The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res. 85: 1910–1916.

    Google Scholar 

  • Etemad-Shahidi, A. & J. Imberger, 2001. Anatomy of turbulence in thermally stratified lakes. Limnol. Oceanogr. 46: 1158–1170.

    Google Scholar 

  • Frenette, J. J., W. F. Vincent, L. Legendre & T. Nagata, 1996. Size-dependent phytoplankton responses to atmospheric forcing in Lake Biwa. J. Plankton Res. 18: 371–391.

    Google Scholar 

  • Gloor, M., A. Wuest & M. Munnich, 1994. Benthic boundary mixing and resuspension induced by internal seiches. Hydrobiologia 284: 59–68.

    Google Scholar 

  • Golterman, H. L., 1969. Methods for Chemical Analysis of Fresh Waters. International Biological Program Handbook. No. 8. Blackwell Scientific Publications, Oxford: 166 pp.

    Google Scholar 

  • Goudsmit, G.-H., F. Peeters, M. Gloor & A. Wuest, 1997. Boundary versus internal diapycnal mixing in stratified natural waters. J. Geophys. Res. 102: 27903–27914.

    Google Scholar 

  • Guildford, S. J. & R. E. Hecky. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol. Oceanogr. 45: 1213–1223.

    Google Scholar 

  • Hanson, A. K. & P. L. Donaghay, 1998: Micro-to fine-scale chemical gradients and layers in stratified coastal waters. Oceanography 11: 10–17.

    Google Scholar 

  • Imberger, J., 1985. The diurnal mixed layer. Limnol. Oceanogr. 30: 737–770.

    Google Scholar 

  • Imberger, J. & G. Ivey, 1991. On the nature of turbulence in a stratified fluid. Part 2: application to lakes. J. Phys. Oceanogr. 21: 659–680.

    Google Scholar 

  • Imberger, J. & J. Patterson, 1990. Physical limnology. Adv. Appl. Mech. 27: 303–475.

    Google Scholar 

  • Itsweire, E. C., J. R. Koseff, D. A. Briggs & J. H. Ferziger, 1993. Turbulence in stratified shear flows - implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanog. 23: 1508–1522.

    Google Scholar 

  • Ivey, G. & J. Imberger, 1991. On the nature of turbulence in a strati-fied fluid. Part 1: the efficiency of mixing. J. Phys. Oceanogr. 21: 650–658.

    Google Scholar 

  • James, W. F. & J. W. Barko, 1991. Littoral-pelagic phosphorus dynamics during night-time convective circulation. Limnol. Oceanogr. 31: 900–906.

    Google Scholar 

  • Jassby, A. & T. M. Powell, 1975. Vertical patterns of eddy diffusion during stratification in Castle Lake, California. Limnol. Oceanogr. 38: 1008–1019.

    Google Scholar 

  • Jellison, R. S. & J. M. Melack, 1988. Photosynthetic activity of phytoplankton and its relation to environmental factors in hypersaline Mono Lake, California. Hydrobiologia 158: 69–88.

    Google Scholar 

  • Jellison, R. S. & J. M. Melack, 1993a. Algal photosynthetic activity and its response to meromixis in hypersaline Mono Lake, California. Limnol. Oceanogr. 38: 818–837.

    Google Scholar 

  • Jellison, R. S. & J. M. Melack, 1993b. Meromixis in hypersaline Mono Lake, California. 1: Vertical mixing and density stratification during the onset, persistence and breakdown of meromixis. Limnol. Oceanogr. 38: 1008–1019.

    Google Scholar 

  • Jellison, R. S. & J. M. Melack, 2001. Nitrogen limitation and particulate elemental ratios of seston in hypersaline Mono Lake, California, U.S.A. Hydrobiologia 466 (Dev. Hydrobiol. 162): 1–12.

    Google Scholar 

  • Jellison, R. S., L. Miller, J. M. Melack & G. L. Dana, 1993. Meromixis in hypersaline Mono Lake, California. 2: Nitrogen fluxes. Limnol. Oceanogr. 38: 1020–1039.

    Google Scholar 

  • Jellison, R., S. MacIntyre & F. J. Millero, 1999. Density and conductivity properties of Na-CO3-Cl-SO4 brine from Mono Lake, California. Int. J. Salt Lake Res. 8: 41–53.

    Google Scholar 

  • LaZerte, B., 1980. The dominating higher order vertical modes of the internal seiche in a small lake. Limnol. Oceanogr. 25: 846–854.

    Google Scholar 

  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R.W. Schmitt & J. M. Toole, 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403: 179–182.

    Google Scholar 

  • Lenz, P., 1980. Ecology of an alkali-adapted variety of Artemia from Mono Lake, California, U.S.A. In Persoone, G., P. Sorgeloos, O. Roels & E. Jaspers (eds), The Brine Shrimp Artemia. Vol. 3. Ecology, Culturing. Use in Aquaculture. Universa Press, Wetteren, Belgium: 79–96.

    Google Scholar 

  • Lueck, R. G.& T. D. Mudge, 1997. Topographically induced mixing around a shallow seamount. Science 276: 1831–1833.

    Google Scholar 

  • MacIntyre, S., 1993. Vertical mixing in a shallow eutrophic lake: possible consequences for the light climate of phytoplankton. Limnol. Oceanogr. 38: 798–817.

    Google Scholar 

  • MacIntyre, S., 1998. Turbulent mixing and resource supply to phytoplankton. In Imberger, J. (ed.), Physical Processes in Lakes and Oceans, Coastal and Estuarine Studies, AGU: 539–567.

  • MacIntyre, S., A. L. Alldredge & C. C. Gotschalk, 1995. Accumulation of marine snow at density discontinuities in the water column. Limnol. Oceanogr. 40: 449–468.

    Google Scholar 

  • MacIntyre, S. & J. M. Melack, 1995. Vertical and horizontal transport in lakes: linking littoral, benthic and pelagic habitats. J. n. am. Benthol. Soc. 14: 599–615.

    Google Scholar 

  • MacIntyre, S., K. M. Flynn, R. Jellison & J. R. Romero, 1999. Boundary mixing and nutrient flux in Mono Lake, CA. Limnol. Oceanogr. 44: 512–529.

    Google Scholar 

  • MacIntyre, S. & J. R. Romero, 2000. Predicting upwelling, boundary mixing, and nutrient fluxes in lakes. Verh. int. Ver. Limnol. 27: 246–250.

    Google Scholar 

  • Maxworthy, T., J. Imberger & A. Saggio, 1998. A laboratory demonstration of a mechanism for the production of secondary, internal gravity-waves in a stratified fluid. In Imberger, J. (ed.), Physical Processes in Lakes and Oceans. Coastal and Estuarine Studies, AGU: 261–270.

  • Melack, J. M., (in press). Ecological dynamics in saline lakes. Verh. int. Ver. Limnol.

  • Melack, J. M. & R. Jellison, 1998. Limnological conditions in Mono Lake: Contrasting monomixis and meromixis in the 1990s. Hydrobiologia 384: 21–39.

    Google Scholar 

  • Melack, J. M. & M. Gastil, 2001. Airborne remote sensing of chlorophyll distributions in Mono Lake, California. Hydrobiologia 466 (Dev. Hydrobiol. 162): 31–38.

    Google Scholar 

  • Monismith, S. G., 1985. Wind-forced motions in stratified lakes and their effect on mixed-layer shear. Limnol. Oceanogr. 30: 771–783.

    Google Scholar 

  • Moum, J. N., D. Hebert, C. A. Paulson & D. R. Caldwell, 1992. Turbulence and internal waves at the equator. Part I. Statistics from towed thermistors and a microstructure profiler. J. Phys. Oceanogr. 22: 1330–1345.

    Google Scholar 

  • Nepf, H. M. & C. E. Oldham, 1997. Exchange dynamics of a shallow contaminated wetland. Aquat. Sci. 59: 193–213.

    Google Scholar 

  • Oakey, N., 1985. Statistics of mixing parameters in the upper ocean during JASIN Phase 2. J. Phys. Oceanogr. 15: 1662–1675.

    Google Scholar 

  • Osborn, T. R., 1980. Estimates of the rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10: 83–89.

    Google Scholar 

  • Ostrovsky, I, Y. Z. Yacobi, P. Walline & I. Kalikhman, 1996. Seiche-induced mixing - its impact on lake productivity. Limnol. Oceanogr. 41: 323–332.

    Google Scholar 

  • Patterson, J. C., 1991. Modelling the effects of motion on primary production in the mixed layer of lakes. Aquat. Sci. 53: 218–238.

    Google Scholar 

  • Polzin, K. L., J. M. Toole, J. R. Ledwell & R. W. Schmidt, 1997. Spatial variability in turbulent mixing in the abyssal ocean. Science 276: 93–96.

    Google Scholar 

  • Robarts, R. D., M. Waiser, O. Hadas, T. Zohary & S. MacIntyre, 1998. Contrasting relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan. Limnol. Oceanogr. 43: 1023–1036.

    Google Scholar 

  • Romero, J. R. & J. M. Melack, 1996. Sensitivity of vertical mixing in a large saline lake to variations in runoff. Limnol. Oceanogr. 41: 955–965.

    Google Scholar 

  • Romero, J. R., R. Jellison & J.M. Melack, 1998. Stratification, mixing and ammonia flux in a hypersaline lake. Archiv. Hydrobiol. 142: 283–315.

    Google Scholar 

  • Saggio, A. & J. Imberger, 1998. Internal wave weather in a stratified lake. Limnol. Oceanogr. 1780–1795.

  • Saggio, A. & J. Imberger, 2001. Mixing and turbulent fluxes in the metalimnion of a stratified lake. Limnol. Oceanogr. 46: 392–409.

    Google Scholar 

  • Strickland, J. S. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can. 167: 1–130.

    Google Scholar 

  • Svensson, U., 1978. Examination of the summer stratification. Nordic Hydrology 9(2).

  • Tennekes, H. & J. L. Lumley, 1972. A First Course in Turbulence. MIT Press: 300 pp.

  • Thorpe, S. A., 1978. On the shape and breaking of finite amplitude internal gravity waves in a shear flow. J. Fluid Mech. 85: 7–31.

    Google Scholar 

  • Thorpe, S. A., 1984. A laboratory study of stratified acelerating shear flow over a rough boundary. J. Fluid Mech. 138: 185–196.

    Google Scholar 

  • Thorpe, S. A, 1987. On the reflection of a train of finite-amplitude internal waves from a uniform slope. J. Fluid Mech. 178: 279–302.

    Google Scholar 

  • Thorpe, S. A., 1989. The distortion of short internal waves produced by a long wave, with applications to ocean boundary mixing. J. Fluid Mech. 208: 395–415.

    Google Scholar 

  • Thorpe, S. A., 1994. Statically unstable layers produced by overturning internal gravity waves. J. Fluid Mech. 260: 333–350.

    Google Scholar 

  • Thorpe, S. A., 1998. Some dynamical effects of the sloping sides of lakes. In Imberger, J. (ed.), Physical Processes in Lakes and Oceans. Coastal and Estuarine Studies, AGU: 441–460.

  • Wuest, A., G. Piepke & D. C. Van Senden, 2000. Turbulent kinetic energy balance as a tool for estimating eddy diffusivity in windforced stratified waters. Limnol. Oceanogr. 45: 1388–1400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacIntyre, S., Jellison, R. Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California. Hydrobiologia 466, 13–29 (2001). https://doi.org/10.1023/A:1014563914112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014563914112

Navigation