Journal of Pharmacokinetics and Pharmacodynamics

, Volume 28, Issue 6, pp 533–554 | Cite as

Quantitative Relationship Between Myocardial Concentration of Tacrolimus and QT Prolongation in Guinea Pigs: Pharmacokinetic/Pharmacodynamic Model Incorporating a Site of Adverse Effect

  • Tsuyoshi Minematsu
  • Hisakazu Ohtani
  • Yasuhiko Yamada
  • Yasufumi Sawada
  • Hitoshi Sato
  • Tatsuji Iga


Clinical cases have been reported of tacrolimus (FK506)-induced QT prolongation. We have previously demonstrated sustained QT prolongation by FK506 in guinea pigs. Herein, we aimed to conduct a pharmacokinetic/pharmacodynamic (PK/PD) analysis of FK506, using a model involving the myocardial compartment. The pharmacokinetics of FK506 and its effects on QTc intervals were investigated in guinea pigs. In the pharmacokinetic study, whole blood and ventricular FK506 concentrations were analyzed, using a 4-compartment model during and after intravenous infusion of FK506 (0.01 or 0.1 mg/hr/kg). Subsequently, the concentration–response relationship between ventricular FK506 concentration and change in QTc interval was analyzed, using the maximal effect (Emax) model. Pharmacokinetic profiles of FK506 showed a delayed distribution of FK506 into the ventricle. Furthermore, the observed QT prolongation paralleled the ventricular FK506 concentrations, with no lag-time between the two. The Emax model successfully described the relationship between changes in QTc interval and ventricular FK506 concentrations. In conclusion, the PK/PD model where the myocardial drug concentration of FK506 was linked with its adverse effect could describe, for the first time, the anti-clockwise hysteresis observed in the relationship between blood FK506 concentration and QT prolongation. Such a hysteresis pattern for QT prolongation might be caused, therefore, mainly by the delayed disposition of FK506 to ventricular myocytes.

tacrolimus quinidine QT prolongation guinea pigs pharmacokinetic/pharmacodynamic modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. S. Faber, M. Zehender, and H. Just. Drug-induced torsade de pointes. Incidence, management and prevention. Drug Saf. 11:463–476 (1994).Google Scholar
  2. 2.
    W. Crumb and I. Cavero. QT interval prolongation by non-cardiovascular drugs: issues and solutions for novel drug development. Pharm. Sci. Technol. Today 2:270–280 (1999).Google Scholar
  3. 3.
    M. C. Johnson, S. So, J. W. Marsh, and A. M. Murphy. QT prolongation and torsades de pointes after administration of FK506. Transplantation 53:929–930 (1992).Google Scholar
  4. 4.
    S. P. Hodak, J. B. Moubarak, I. Rodriguez, M. C. Gelfand, M. R. Alijani, and C. M. Tracy. QT prolongation and near fatal cardiac arrhythmia after intravenous tacrolimus administration: a case report. Transplantation 66:535–537 (1998).Google Scholar
  5. 5.
    T. Minematsu, H. Ohtani, H. Sato, and T. Iga. Sustained QT prolongation induced by tacrolimus in guinea pigs. Life Sci. 65:PL197–PL202 (1999).Google Scholar
  6. 6.
    H. Derendorf and B. Meibohm. Modeling of pharmacokinetic_pharmacodynamic (PK_ PD) relationships: concepts and perspectives. Pharm. Res. 16:176–185 (1999).Google Scholar
  7. 7.
    H. Ohtani, E. Hanada, K. Yamamoto, Y. Sawada, and T. Iga. Pharmacokinetic–pharmacodynamic analysis of the electrocardiographic effects of terfenadine and quinidine in rats. Biol. Pharm. Bull. 19:1189–1196 (1996).Google Scholar
  8. 8.
    H. Ohtani, H. Kotaki, Y. Sawada, and T. Iga. A comparative pharmacokinetic–pharmacodynamic study of the electrocardiographic effects of epinastine and terfenadine in rats. J. Pharm. Pharmacol. 49:458–462 (1997).Google Scholar
  9. 9.
    M. Hirota, H. Ohtani, E. Hanada, H. Kotaki, Y. Sawada, and T. Iga. Effects of hypokalaemia on arrhythmogenic risk of quinidine in rats. Life Sci. 62:2159–2169 (1998).Google Scholar
  10. 10.
    E. Hanada, H. Ohtani, H. Kotaki, Y. Sawada, H. Sato, and T. Iga. Pharmacodynamic analysis of the electrocardiographic interaction between disopyramide and erythromycin in rats. J. Pharm. Sci. 88:234–240 (1999).Google Scholar
  11. 11.
    H. Ohtani, H. Sato, T. Iga, H. Kotaki, and Y. Sawada. Pharmacokinetic–pharmacodynamic analysis of the arrhythmogenic potency of a novel antiallergic agent, ebastine, in rats. Biopharm. Drug. Dispos. 20:101–106 (1999).Google Scholar
  12. 12.
    T. Minematsu, H. Ohtani, H. Sato, and T. Iga. Pharmacokinetic/pharmacodynamic analysis of tacrolimus-induced QT prolongation in guinea pigs. Biol. Pharm. Bull. 22:1341–1346 (1999).Google Scholar
  13. 13.
    H. C. Bazzet. An analysis of the time-relations of electrocardiograms. Heart 7:353–370 (1920).Google Scholar
  14. 14.
    E. Hayes, M. K. Pugsley, W. P. Penz, G. Adaikan, and M. J. Walker. Relationship between QaT and RR intervals in rats, guinea pigs, rabbits, and primates. J. Pharmacol. Toxicol. Methods 32:201–207 (1994).Google Scholar
  15. 15.
    W. J. Jusko, A. W. Thomson, J. Fung, P. McMaster, S. H. Wong, E. Zylber-Katz, U. Christians, M. Winkler, W. E. Fitzsimmons, R. Lieberman, J. McBride, M. Kobayashi, V. Warty, and S. J. Soldin. Consensus document: therapeutic monitoring of tacrolimus (FK-506). Ther. Drug Monit. 17:606–614 (1995).Google Scholar
  16. 16.
    Y. Sawada, M. Hanano, Y. Sugiyama, H. Harashima, and T. Iga. Prediction of the volumes of distribution of basic drugs in humans based on data from animals. J. Pharmacokinet. Biopharm. 12:587–596. (1984).Google Scholar
  17. 17.
    S. H. Snyder, M. M. Lai, and P. E. Burnett. Immunophilins in the nervous system. Neuron 21:283–294 (1998).Google Scholar
  18. 18.
    W. H. duBell, P. A. Wright, W. J. Lederer, and T. B. Rogers. Effect of the immunosupressant FK506 on excitation–contraction coupling and outward K +currents in rat ventricular myocytes. J. Physiol. 501:509–516 (1997).Google Scholar
  19. 19.
    W. H. duBell, S. T. Gaa, W. J. Lederer, and T. B. Rogers. Independent inhibition of calcineurin and K +currents by the immunosuppressant FK-506 in rat ventricle. Am. J. Physiol. 275:H2041–H2052 (1998).Google Scholar
  20. 20.
    A. A. Grace and A. J. Camm. Quinidine. N. Engl. J. Med. 338:35–45 (1998).Google Scholar
  21. 21.
    H. Zhang, B. Zhu, J. A. Yao, and G. N. Tseng. Differential effects of S6 mutations on binding of quinidine and 4-aminopyridine to rat isoform of Kv1.4: common site but different factors in determining blockers' binding affinity. J. Pharmacol. Exp. Ther. 287:332–343 (1998).Google Scholar
  22. 22.
    D. Rampe and M. K. Murawsky. Blockade of the human cardiac K +channel Kv1.5 by the antibiotic erythromycin. Naunyn-Schmiedebergs Arch. Pharmacol. 355:743–750 (1997).Google Scholar
  23. 23.
    S. Zhang, Z. Zhou, Q. Gong, J. C. Makielski, and C. T. January. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ. Res. 84:989–998 (1999).Google Scholar
  24. 24.
    M. Taglialatela, A. Pannaccione, P. Castaldo, G. Giorgio, Z. Zhou, C. T. January, A. Genovese, G. Marone, and L. Annunziato. Molecular basis for the lack of HERG K + channel block-related cardiotoxicity by the H 1receptor blocker cetirizine compared with other second-generation antihistamines. Mol. Pharmacol. 54:113–121 (1998).Google Scholar
  25. 25.
    W. H. duBell, W. J. Lederer, and T. B. Rogers. K +currents responsible for repolarization in mouse ventricle and their modulation by FK-506 and rapamycin. Am. J. Physiol. 278:H886–H897 (2000).Google Scholar
  26. 26.
    J. P. Steiner, T. M. Dawson, M. Fotuhi, C. E. Glatt, A. M. Snowman, N. Cohen, and S. H. Snyder. High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature 358:584–587 (1992).Google Scholar
  27. 27.
    N. H. Holford, P. E. Coates, T. W. Guentert, S. Riegelman, and L. B. Sheiner. The effect of quinidine and its metabolites on the electrocardiogram and systolic time intervals: concentration–effect relationships. Br. J. Clin. Pharmacol. 11:187–195 (1981).Google Scholar
  28. 28.
    J. A. Bennett, Y. C. Clancy, and J. D. McNeish. Identification and characterization of the murine FK506 binding protein (FKBP) 12.6 gene. Mamm. Genome. 9:1069–1071 (1998).Google Scholar
  29. 29.
    G. S. Hamilton and J. P. Steiner. Immunophilins: beyond immunosuppression. J. Med. Chem. 41:5119–5143 (1998).Google Scholar
  30. 30.
    K. Yokogawa, M. Takahashi, I. Tamai, H. Konishi, M. Nomura, S. Moritani, K. Miyamoto, and A. Tsuji. P-glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice. Pharm. Res. 16:1213–1218 (1999).Google Scholar
  31. 31.
    A. T. Fojo, K. Ueda, D. J. Slamon, D. G. Poplack, M. M. Gottesman, and I. Pastan. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. U.S.A. 84:265–269 (1987).Google Scholar
  32. 32.
    A. Nishiura, T. Murakami, Y. Higashi, and N. Yata. Role of acidic phospholipids in tissue distribution of quinidine in rats. J. Pharmacobiodyn. 10:134–141 (1987).Google Scholar
  33. 33.
    D. J. Morgan, and J. L. Huang. Albumin decreases myocardial permeability of unbound quinidine in perfused rat heart. J. Pharmacol. Exp. Ther. 268:283–290 (1994).Google Scholar
  34. 34.
    S. Shibasaki, K. Komoriya, S. Gon, Y. Matsuura, R. Nishigaki, and K. Umemura. Effects of cimetidine on quinidine distribution in rats. J. Pharmacobiodyn. 10:719–726 (1987).Google Scholar
  35. 35.
    L. L. Peeters, G. Grutters, and C. B. Martin. Distribution of cardiac output in the unstressed pregnant guinea pig. Am. J. Obstet. Gynecol. 138:1177–1184 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Tsuyoshi Minematsu
    • 1
    • 2
  • Hisakazu Ohtani
    • 3
  • Yasuhiko Yamada
    • 1
    • 2
  • Yasufumi Sawada
    • 3
  • Hitoshi Sato
    • 4
  • Tatsuji Iga
    • 1
    • 2
  1. 1.Department of PharmacyUniversity of Tokyo HospitalJapan
  2. 2.Faculty of MedicineUniversity of TokyoTokyoJapan
  3. 3.Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  4. 4.Graduate School of PharmacyShowa UniversityTokyoJapan

Personalised recommendations