Foundations of Physics

, Volume 32, Issue 2, pp 193–216 | Cite as

Hidden Variables and Bell Inequalities on Quantum Logics

  • Sylvia Pulmannová


In the quantum logic approach, Bell inequalities in the sense of Pitowski are related with quasi hidden variables in the sense of Deliyannis. Some properties of hidden variables on effect algebras are discussed.

quantum logic orthomodular lattice state observable quasi hidden variables Bell inequalities ideals effect algebras MV algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Alda, “On 0–1 measure for projectors II,” Aplikace Matematiky 26, 57–58 (1981).Google Scholar
  2. 2.
    J. S. Bell, “On the problem of hidden variables in quantum mechanics,” Rev.Mod.Phys. 38, 447–452 (1960).Google Scholar
  3. 3.
    E. G. Beltrametti and G. Cassinelli, The Logic of Quantm Mechanics (Addison–Wesley, Reading, MA, 1981).Google Scholar
  4. 4.
    E. Beltrametti and M. Mńczyński, “On a characterization of classical and nonclassical probabilities,” J.Math.Phys. 32, 1280–1286 (1991).Google Scholar
  5. 5.
    M. K. Bennett and D. J. Foulis, “A generalized Sasaki projection for affect algebras,” Tatra Mt.math.Publ. 15, 55–65 (1994).Google Scholar
  6. 6.
    L. Beran, Orthomodular Lattices, Algebraic Approach (Reidel, Dordrecht, 1983).Google Scholar
  7. 7.
    G. Cattaneo, R. Giuntini, and S. Pulmannová, “Topological and degenerate Brouwer– Zadeh posets applications to fuzzy sets and unsharp quantum theories,” Found.Phys. 30 (2000).Google Scholar
  8. 8.
    G. Chevalier and S. Pulmannová, “Semiprime ideals in orthomodular posets,” Contributions to General Algebra 12, 135–143 (2000).Google Scholar
  9. 9.
    F. Chovanec and F. Kôpka, Boolean D-posets,” Tatra Mt.Math.Publ. 10, 107–121 (1998).Google Scholar
  10. 10.
    A. B. D'Andrea and S. Pulmannová, “ Quasivarities of orthomodular lattices,” Rep. Math.Phys. 27, 688–699 (1994).Google Scholar
  11. 11.
    P. C. Deliyannis, “Generalized hidden variables theorem,” J.Math.Phys. 12, 1013–1017 (1971).Google Scholar
  12. 12.
    A. Dvurečenskij and H. Länger, “Bell-type inequalities in orthomodular lattices I, II,” Int. J.Theor.Phys. 34, 995–1024, 1025–1038 (1995).Google Scholar
  13. 13.
    A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures (Kluwer Academic, Dordrecht, 2000).Google Scholar
  14. 14.
    D. J. Foulis and M. K. Bennett, “Effect algebras and unsharp quantum logics,” Found. Phys. 24, 1325–1346 (1994).Google Scholar
  15. 15.
    R. Giuntini, Quantum Logic and Hidden Variables (Bibliographishes Institut, Mannheim, 1991).Google Scholar
  16. 16.
    S. P. Gudder, Stochastic Methods in Quantum Mechanics (Elsevier, North-Holland, 1979).Google Scholar
  17. 17.
    S. P. Gudder and S. Pulmannová, “Quotients of Partial Abelian Monoids,” Algebra Universalis 38, 395–421 (1997).Google Scholar
  18. 18.
    P. R. Halmos, Measure Theory (Van Nostrand, New York, 1962).Google Scholar
  19. 19.
    G. Kalmbach, Orthomodular Lattices (Academic, New York, 1983).Google Scholar
  20. 20.
    S. Kochen and E. P. Specker, “The problem of hidden variables in quantum mechanics,” J.Math.Mech. 17, 59–87 (1867).Google Scholar
  21. 21.
    F. Koôka and F. Chovanec, “D-posets,” Math.Slovaca 44, 21–34 (1994).Google Scholar
  22. 22.
    P. Lahti, “Uncertainty and complementarity in axiomatic quantum mechanics,” Int.J. Theor.Phys. 19, 780–842 (1980).Google Scholar
  23. 23.
    E. Marsden, “The commutator and solvability in a generalized orthomodular lattice,” Pacific J.Math. 33, 457–361 (1970).Google Scholar
  24. 24.
    R. R. Phelps, Lectures on Choquet's Theorem (Van Nostrand, Princeton, 1966).Google Scholar
  25. 25.
    O. Pitowski, Quantum Probability-Quantum Logic (Lecture Notes in Physics, Vol. 321) (Springer, Berlin, 1989).Google Scholar
  26. 26.
    P. Pták and S. Pulmannová, Orthomodular Structures as Quantum Logics (Kluwer Academic, Dordrecht, 1981).Google Scholar
  27. 27.
    S. Pulmannová, “Bell inequalities and quantum logics,” in The Interpretations of Quantum Theory: Where Do We Stand?, L. Accardi, ed. (Encyclopedia Italiana, Roma, 1994).Google Scholar
  28. 28.
    S. Pulmannová and V. Majerník, “Bell inequalities on quantum logics,” J.Math.Phys. 33, 2173–2178 (1992).Google Scholar
  29. 29.
    J. Pykacz, “On Bell type inequalities in quantum logics,” in The concept of Probability, E. J. Bitsakis and C. A. Nicolaides, eds. (Kluwer Academic, Dordrecht, 1989).Google Scholar
  30. 30.
    J. Pykacz and E. Santos, “Hidden variables in quantum logic approach revisited,” J.Math.Phys. 32, 1287–1292 (1991).Google Scholar
  31. 31.
    Z. Riečanová, “Generalization of blocks for D-lattices and lattice ordered effect algebras,” Int.J.Theor.Phys. 39, 859–869 (2000).Google Scholar
  32. 32.
    J. Tkadlec, “Conditions that force an orthomodular poset to be a Boolean algebra,” Tatra Mt.Math.Publ. 10, 117–135 (1988).Google Scholar
  33. 33.
    V. S. Varadarajan, Geometry of Quantum Theory (Springer, Berlin, 1985).Google Scholar
  34. 34.
    M. Zisis, “Approximate hidden variables,” Found.Phys. 30, 971–1000 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Sylvia Pulmannová
    • 1
  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations