Skip to main content
Log in

Quantum Lyapunov Exponents

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show that it is possible to associate univocally with each given solution of the time-dependent Schrödinger equation a particular phase flow (“quantum flow”) of a non-autonomous dynamical system. This fact allows us to introduce a definition of chaos in quantum dynamics (quantum chaos), which is based on the classical theory of chaos in dynamical systems. In such a way we can introduce quantities which may be appelled quantum Lyapunov exponents. Our approach applies to a non-relativistic quantum-mechanical system of n charged particles; in the present work numerical calculations are performed only for the hydrogen atom. In the computation of the trajectories we first neglect the spin contribution to chaos, then we consider the spin effects in quantum chaos. We show how the quantum Lyapunov exponents can be evaluated and give several numerical results which describe some properties found in the present approach. Although the system is very simple and the classical counterpart is regular, the most non-stationary solutions of the corresponding Schrödinger equation are chaotic according to our definition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. V. Jensen, Nature 355, 311 (1992).

    Google Scholar 

  2. R. C. Hilbor, Chaos and Non-Linear Dynamics (Oxford University Press, New York, 1994).

    Google Scholar 

  3. M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1972), Vol I; (Academic Press, New York, (1975), Vol II. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966).

    Google Scholar 

  4. P. R. Holland, The Quantum Theory of Motion (Cambridge Univerity Press, Cambridge, 1993).

    Google Scholar 

  5. R. H. Parmenter and R. W. Valentine, Phys.Lett.A 201, 1 (1995).

    Google Scholar 

  6. U. Schwenghelbeck and F. H. M. Faisal, Phys.Lett.A 207, 31 (1995). G. Iacomelli and M. Pettini, Phys.Lett.A 212, 29 (1996). S. Sengupta and P. K. Chattaraj, Phys.Lett.A 215, 119 (1996).

    Google Scholar 

  7. V. I. Arnold, Equazioni Differenziali Ordinarie (Ed. Mir, Moscow, 1979).

    Google Scholar 

  8. R. M. M. Mattheij and J. Molenaar, Ordinary Differential Equations in Theory and Practice (Wiley, Chichester, 1996).

    Google Scholar 

  9. K. Berndl, D. Dürr, S. Goldstein, G. Peruzzi, and N. Zanghi, Comm.Math.Phys. 173, 647 (1995).

    Google Scholar 

  10. F. Scheck, Mechanics (Springer, Berlin, 1994).

    Google Scholar 

  11. J. L. Mc Cauley, Classical Mmechanics (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  12. G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Meccanica 15, 9 (1980).

    Google Scholar 

  13. J. P. Eckman and D. Ruelle, Rev.Mod.Phys. 57, 617 (1985).

    Google Scholar 

  14. K. E. Atkinson, An Introduction to Numerical Analysis (Wiley, New York, 1989). K. Geist, U. Parlitz, and W. Lauterborn, Prog.Theor.Phys. 83 875 (1990).

    Google Scholar 

  15. G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Phys.Rev.A 14, 2338 (1976).

    Google Scholar 

  16. T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer, New York, 1989).

    Google Scholar 

  17. G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Meccanica 15, 21 (1980).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Meccanica Quantistica—Teoria non-Relativistica (Editori Riuniti–Edizioni MIR, Roma, 1978), p. 553.

    Google Scholar 

  19. D. Hestenes: Space-Time Algebra (Gordon & Breach, New York, 1966); New Foundations for Classical Mechanics (Kluwer Academic, Dordrecht, 1986); Found.Phys. 20, 1213 (1990); 23, 365 (1993); 15, 63 (1985); 12, 153 (1981); Am.J.Phys. 47, 399 (1979); 39, 1028 (1971); 39, 1013 (1971); J.Math.Phys. 14, 893 (1973); 16, 573 (1975); 16, 556 (1975); 8, 798 (1979); 8, 809 (1967) 809; 8, 1046 (1967); D. Hestenes and A. Weingartshofer, eds., The Electron (Kluwer Academic, Dordrecht, 1991).

    Google Scholar 

  20. G. Salesi, Mod.Phys.Lett.A 11, 1815 (1996). G. Salesi and E. Recami, Found.Phys.Lett. 10, 533 (1997); Found.Phys. 28, 763 (1998); Phys.Rev.A 57, 98 (1998), and references therein.

  21. S. Esposito, Found.Phys.Lett. 12, 167 (1999).

    Google Scholar 

  22. E. Deotto and G. C. Ghirardi, Found.Phys. 28, 1 (1998).

    Google Scholar 

  23. L. de Broglie, C.R.Acad.Sci.(Paris) 183, 447 (1926); Non-Linear Wave Mechanics (Elsevier, Amsterdam, 1960); Théorie Générale des Particules a` Spin (Gauthier-Villars, Paris, 1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falsaperla, P., Fonte, G. & Salesi, G. Quantum Lyapunov Exponents. Foundations of Physics 32, 267–294 (2002). https://doi.org/10.1023/A:1014413310636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014413310636

Navigation