Skip to main content
Log in

Corrosion resistance of compositionally modulated Zn–Ni multilayers electrodeposited from dual baths

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

By successive deposition from dual baths containing Zn sulfate electrolyte and Ni sulfate–chloride electrolyte, smooth and bright compositionally modulated multilayered (CMM) coatings with different number, thickness and sequence of the sublayers were obtained. The corrosion resistance of the coatings was studied by anode potentiodynamic dissolution and by corrosion potential measurement. With increase in the number of sublayers, regardless of their individual thickness, the correlation between the quantity of Zn, dissolved at more negative potentials (between −1.250 and −0.750 V vs SSE), and the whole quantity of the metal in the coating, decreases. This correlation is smaller in CMM coatings ending with a Ni oversublayer compared to CMM coatings ending with a Zn oversublayer. The corrosion potentials of CMM coatings ending with a Zn oversublayer composed of a great number thin (0.7 μm) sublayers, are more positive (0.150/0.200 V) than the potentials of CMM coatings composed of a few thick (3.0 μm) sublayers. The most positive corrosion potentials (−0.750/−0.800 V vs SSE) have the CMM coatings ending with a Ni oversublayer; i.e. these multilayered coatings are the most corrosion resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gabe, Electochim. Acta 39 (1994) 1115.

    Google Scholar 

  2. W. Blum, Trans. Am. Electrochem. Soc. 40 (1921) 307.

    Google Scholar 

  3. H. Koeppe, PhD thesis, Universitat Giessen (1923), from J. Appl. Phys. 60 (1986) 1374.

    Google Scholar 

  4. W. Deubner, Ann. Phys. (Leipzig) 5 (1930) 261.

    Google Scholar 

  5. P. Tang, P. Leisner, Per Moller, C. Nielsen and D. Nabikahni, CAG 940, 301–384.

  6. J. Koehler, Phys. Rev. B 2 (1970) 547.

    Google Scholar 

  7. J. Celis, A. Haseeb and J. Roos, Trans. Inst. Metal Finish. 70 (1992) 123.

    Google Scholar 

  8. A. Haseeb, J. Celis and J. Roos, J. Electrochem. Soc. 141 (1994) 230.

    Google Scholar 

  9. G. Wouters, M. Bratoeva, J. Celis and J. Roos, J. Electrochem. Soc. 141 (1994) 397.

    Google Scholar 

  10. G. Wouters, M. Bratoeva, J. Celis and J. Roos, Electrochim. Acta 140 (1995) 1439.

    Google Scholar 

  11. G. Barral and S. Maximovitch, Colloque de physique C4 51 (1990) 291.

    Google Scholar 

  12. L. Goldman, B. Blanpain and F. Spaepen, J. Appl. Phys. 40 (1986) 1374.

    Google Scholar 

  13. C. Ross, L. Goldman and F. Spaepen, J. Electrochem. Soc. 140 (1993) 91.

    Google Scholar 

  14. M. Kalantary, G. Wilcox and D. Gabe, Brit. Corr. J. 33 (1998) 197.

    Google Scholar 

  15. G. Chawa, G. Wilcox and D. Gabe, Trans. Inst. Metal. Finish 76 (1998) 117.

    Google Scholar 

  16. R. Steigerwand and N. Green, J. Electrochem. Soc. 109 (1962) 1026.

    Google Scholar 

  17. S. Swathirajan, J. Electrochem. Soc. 133 (1986) 671.

    Google Scholar 

  18. V. Jovic, R. Zejnilovic, A. Despic and J. Stevanovic, J. Appl. Electrochem. 18 (1988) 511.

    Google Scholar 

  19. S. Swathirajan, J. Electroanal. Chem. 221 (1987) 211.

    Google Scholar 

  20. P. Andricacos, J. Tabib and L. Romankiw, J. Electrochem. Soc. 135 (1988) 1172.

    Google Scholar 

  21. P. Andricacos, C. Avana, J. Tabib, J. Dukovic and L. Romankiw, J. Electrochem. Soc. 136 (1989) 1336.

    Google Scholar 

  22. K. Wong and P. Andricacos, J. Electrochem. Soc. 137 (1990) 1087.

    Google Scholar 

  23. J. Horkans, I-C. Hsu Chang, P. Andricacos and E. Podlaha, J. Electrochem. Soc. 138 (1991) 411.

    Google Scholar 

  24. V. Jovic, A. Despic, J. Stevanovic and S. Spaic, Electrochim. Acta 34 (1989) 1093.

    Google Scholar 

  25. V. Jovic, S. Spaic, A. Despic, J. Stevanovic and M. Pristavic, Mater. Sci. Technol. 7 (1991) 1021.

    Google Scholar 

  26. L. Skibina, J. Stevanovic and A. Despic, J. Electroanal. Chem. 310 (1991) 391.

    Google Scholar 

  27. J. Stevanovic, I. Kovrigina and A. Despic, J. Serb. Chem. Soc. 56 (1991) 217.

    Google Scholar 

  28. J. Stevanovic, V. Jovic and A. Despic, J. Electroanal. Chem. 349 (1993) 365.

    Google Scholar 

  29. V. Jovic, B. Jovic and A. Despic, J. Electroanal. Chem. 357 (1993) 357.

    Google Scholar 

  30. V. Jovic and V. Jevtic, J. Serb. Chem. Soc. 61 (1996) 479.

    Google Scholar 

  31. I. Kirilova, I. Ivanov and St. Rashkov, J. Appl. Electrochem. 28 (1998) 637.

    Google Scholar 

  32. I. Kirilova, I. Ivanov and St. Rashkov, J. Appl. Electrochem. 28 (1998) 1359.

    Google Scholar 

  33. I. Kirilova and I. Ivanov, J. Appl. Electrochem. 29 (1999) 1133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kirilova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, I., Valkova, T. & Kirilova, I. Corrosion resistance of compositionally modulated Zn–Ni multilayers electrodeposited from dual baths. Journal of Applied Electrochemistry 32, 85–89 (2002). https://doi.org/10.1023/A:1014259326912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014259326912

Navigation