International Journal of Thermophysics

, Volume 23, Issue 1, pp 1–13 | Cite as

The Exact Interface Model for Wetting in the Two-Dimensional Ising Model

  • P. J. Upton
Article

Abstract

We use exact methods to derive an interface model from an underlying microscopic model, i.e., the Ising model on a square lattice. At the wetting transition in the two-dimensional Ising model, the long Peierls contour (or interface) gets depinned from the substrate. Using exact transfer-matrix methods, we find that on sufficiently large length scales (i.e., length scales sufficiently larger than the bulk correlation length) the distribution of the long contour is given by a unique probability measure corresponding to a continuous “interface model.” The interface binding “potential” is a Dirac delta function with support on the substrate and, therefore, a distribution rather than a function. More precisely, critical wetting in the two-dimensional Ising model, viewed on length scales sufficiently larger than the bulk correlation length, is described by a reflected Brownian motion with a Dirac δ perturbation on the substrate so that exactly at the wetting transition the substrate is a perfectly reflecting surface; otherwise there exists a δ perturbation. A lattice solid-on-solid model was found to give identical results (albeit with modified parameters) on length scales sufficiently larger than the lattice spacing, thus demonstrating the universality of the continuous interface model.

critical wetting exact results interface models Ising models solid-on-solid models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. W. Cahn, J. Chem. Phys. 66:3667 (1977).Google Scholar
  2. 2.
    H. Nakanishi and M. E. Fisher, Phys. Rev. Lett. 49: 1565 (1982).Google Scholar
  3. 3.
    D. B. Abraham, Phys. Rev. Lett. 44: 1165 (1980).Google Scholar
  4. 4.
    R. Lipowsky, D. M. Kroll, and R. K. P. Zia, Phys. Rev. B 27: 4499 (1983).Google Scholar
  5. 5.
    E. Brézin, B. Halperin, and S. Leibler, J. Phys. (Paris) 44:775 (1983).Google Scholar
  6. 6.
    D. S. Fisher and D. A. Huse, Phys. Rev. B 32: 247 (1985).Google Scholar
  7. 7.
    R. Lipowsky and M. E. Fisher, Phys. Rev. Lett. 57: 2411 (1986); Phys. Rev. B 36:2126 (1987).Google Scholar
  8. 8.
    M. E. Fisher and A. J. Jin, Phys. Rev. B 44:1430 (1991); Phys. Rev. Lett. 69:792 (1992); A. J. Jin and M. E. Fisher, Phys. Rev. B 47:7365 (1993); Phys. Rev. B 48:2642 (1993).Google Scholar
  9. 9.
    C. J. Boulter and J. O. Indekeu, Phys. Rev. E 56: 5734 (1997).Google Scholar
  10. 10.
    Further developments of this approach include the incorporation of order-parameter fluctuations close to the substrate through the introduction of a second (lower) “interfacelike” degree of freedom, y < ( x ), which is coupled to the (upper) wetting interface, y > ( x ) > y < ( x )0, leading to an effective two-interface Hamiltonian, \(H\) eff[y <, y >]. See C. J. Boulter and A. O. Parry, Phys. Rev. Lett. 74:3403 (1995); A. O. Parry and C. J. Boulter, Physica A 218:77 (1995); C. J. Boulter and A. O. Parry, Physica A 218:109 (1995).Google Scholar
  11. 11.
    C. J. Boulter, Phys. Rev. Lett. 79:1897 (1997).Google Scholar
  12. 12.
    P. J. Upton, Phys. Rev. E 60:R3475 (1999).Google Scholar
  13. 13.
    D. B. Abraham and E. R. Smith, Phys. Rev. B 26:1480 (1982); J. Statist. Phys. 43:621 (1986).Google Scholar
  14. 14.
    See, e.g., I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus (Springer-Verlag, New York, 1988).Google Scholar
  15. 15.
    D. B. Abraham, Phys. Rev. Lett. 47:545 (1981).Google Scholar
  16. 16.
    M. P. A. Fisher, D. S. Fisher, and J. D. Weeks, Phys. Rev. Lett. 48:368 (1982).Google Scholar
  17. 17.
    S. Albeverio, Ph. Blanchard, and Z. M. Ma, in International Series of Numerical Mathematics (Birkhäuser Verlag, Basel, 1991), Vol. 102, p. 1.Google Scholar
  18. 18.
    S. Albeverio, G. W. Johnson, and Z. M. Ma, Acta Appl. Math. 42:267 (1996).Google Scholar
  19. 19.
    B. Simon, in Proceedings Mathematical Quantum Theory II: Schrödinger Operators, J. Feldman, R. Froese, and L. M. Rosen, eds. (American Mathematical Society, Providence, RI, 1995).Google Scholar
  20. 20.
    T. W. Burkhardt, Phys. Rev. B 40:6987 (1989).Google Scholar
  21. 21.
    D. B. Abraham, N. M. Švrakić, and P. J. Upton, Phys. Rev. Lett. 68:423 (1992).Google Scholar
  22. 22.
    M. E. Fisher, private communication (University of Maryland at College Park).Google Scholar
  23. 23.
    See also D. B. Abraham and J. De Coninck, J. Phys. A 16:L333 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • P. J. Upton
    • 1
  1. 1.H. H. Wills Physics Laboratory, University of BristolBristolUnited Kingdom

Personalised recommendations