Skip to main content
Log in

Stability Analysis of the Hubbard Model

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

An effective Hartree–Fock–Bogoliubov-type interaction is calculated for the Hubbard model in second order in the coupling by means of flow equations. A stability analysis is performed in order to obtain the transition into various possible phases.We find, that the second order contribution weakens the tendency for the antiferromagnetic transition. Apart from a possible antiferromagnetic transition the d-wave Pomeranchuk instability recently reported by Halboth and Metzner is usually the strongest instability. A newly found instability is of p-wave character and yields band-splitting. In the BCS-channel one obtains the strongest contribution for \(d_{x^2 - y^2 } \)-waves. Other types of instabilities of comparable strength are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D.J. Scalapino, Phys. Repts. 250, 329 (1995).

    Google Scholar 

  2. F. Wegner, Annalen der Physik (Leipzig) 3, 77 (1994).

    Google Scholar 

  3. R. Shankar, Rev. Mod. Phys. 66, 129 (1994).

    Google Scholar 

  4. D. Zanchi, H.J. Schulz, Z. Phys. B 103, 339 (1997); Europhys. Lett. 44, 235 (1998).

    Google Scholar 

  5. M. Salmhofer, Comm. Math. Phys. 194, 249 (1998).

    Google Scholar 

  6. C.J. Halboth, W. Metzner, Phys. Rev. B 61, 4364 (2000).

    Google Scholar 

  7. C. Honerkamp et al., Phys. Rev. B 63, 035109 (2001); M. Salmhofer and C. Honerkamp, Prog. Theor. Phys. 105, 1 (2001).

    Google Scholar 

  8. S.D. Głazek and K.G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994).

    Google Scholar 

  9. N.E. Bickers, D.J. Scalapino, Ann. Phys. (N.Y.) 193, 206 (1989).

    Google Scholar 

  10. N.E. Bickers, S.R. White, Phys. Rev. B 43, 8044 (1991).

    Google Scholar 

  11. S. Meixner et al., Phys. Rev. Lett. 79, 4902 (1997); W. Hanke et al. in Festkörperprobleme/Advances in Solid State Physics 38 (1999); R. Eder, W. Hanke, S.C. Zhang, Phys. Rev. B 57, 13781 (1998).

    Google Scholar 

  12. C. J. Halboth, W. Metzner, Phys. Rev. Lett. 85, 5162 (2000).

    Google Scholar 

  13. F. Wegner, in: S. Arnone, Y.A. Kubyshin, T.R. Morris, K. Yoshida (eds.), Proceedings of the 2nd Conference on the Exact Renormalization Group, Rome 2000, Int. J. Mod. Phys. A 16, 1941 (2001).

  14. I. Affleck, J.B. Marston, Phys. Rev. B 37, 3774 (1988).

    Google Scholar 

  15. S. Chakravarty et al. Phys. Rev. B 63, 094503 (2001).

    Google Scholar 

  16. A. Erdelyi (ed.) Higher Transcendental Functions, Volume III, McGraw-Hill, New York (1955).

    Google Scholar 

  17. A. Mielke, private communication.

  18. A. Mielke, Euro. Phys. Jour. B 5, 605 (1998).

    Google Scholar 

  19. J. Stein, J. Phys. G 26, 377 (2000).

    Google Scholar 

  20. J. Stein, J. Stat. Phys. 90, 889 (1998).

    Google Scholar 

  21. S. Kehrein, A. Mielke, P. Neu, Z. Phys. B 99, 269 (1996).

    Google Scholar 

  22. E. Körding, diploma thesis, Heidelberg (2001).

  23. J. Feldman et al. Helv. Phys. Acta 70, 154 (1997).

    Google Scholar 

  24. The numerical calculations on the Hubbard model were performed by I. Grote and F. Wegner.

  25. Y. Nagaoka, Phys. Rev. 147, 392 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grote, I., Körding, E. & Wegner, F. Stability Analysis of the Hubbard Model. Journal of Low Temperature Physics 126, 1385–1409 (2002). https://doi.org/10.1023/A:1013804405357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013804405357

Keywords

Navigation