Genetica

, Volume 111, Issue 1–3, pp 175–195 | Cite as

Induction of triploidy and gynogenesis in teleost fish with emphasis on marine species

  • A. Felip
  • S. Zanuy
  • M. Carrillo
  • F. Piferrer

Abstract

The induction of triploidy and gynogenesis by chromosome set manipulation has traditionally been studied more intensively in freshwater than in marine fish. In the last years, however, several studies have applied these manipulations in about a dozen marine species, including mainly sparids, moronids and flatfishes. This paper focuses on the methodologies used to induce, verify, and assess performance of both triploids and gynogenetics of these marine species. Since many of them are batch spawners and have small and fragile eggs and larvae, peculiarities relating to broodstock management, gamete quality and mortality assessment during early larval stages are also taken into account. However, data show that if handling is correct and the treatments are optimized, triploid and gynogenetic rates of 100% can be easily achieved. Survival of triploids with respect to the controls is about 70–80%, whereas in gynogenetics it is generally low and more variable, depending on the species considered. In the marine fish investigated so far, triploidy has not resulted in significantly higher growth rates. On the other hand, the induction of gynogenesis has resulted in the production of both all-female and mix-sex stocks. Throughout the paper, special reference is made to the European sea bass (Dicentrarchus labrax L.), a species of both basic and applied interest, for which a comprehensive study has been carried out on the induction, verification and performance of triploids and gynogenetics.

chromosome set manipulation Dicentrarchus labrax gonadal development growth gynogenesis marine teleosts sex determination sex ratio sterility triploidy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, J.J., S. Seki, A. Cnaani, S. Poompuang, E. Hallerman, N. Umiel, G. Hulata, G.A.E. Gall & B. May, 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185: 43–56.Google Scholar
  2. Allen, S.K. Jr., 1983. Flow cytometry: assaying experimental polyploid fish and shellfish. Aquaculture 33: 317–328.Google Scholar
  3. Allen, S.K. Jr. & J.G. Stanley, 1979. Polyploid mosaics induced by cytochalasin B in landlocked Atlantic salmon Salmo salar. Trans. Am. Fish. Soc. 108: 462–466.Google Scholar
  4. Allendorf, F.W. & R.F. Leary, 1984. Heterozigosity in gynogenetic diploids and triploids estimated by gene-centromere recombination rates. Aquaculture 43: 413–420.Google Scholar
  5. Alvariño, J.M.R., M. Carrillo, S. Zanuy, F. Prat & E. Mañanós, 1992. Pattern of sea bass oocyte development after ovarian stimulation by LHRHa. J. Fish Biol. 41: 965–970.Google Scholar
  6. Ankley, G.T., J.E. Tietge, G.W. Holcombe, D.L. DeFoe, S.A. Diamond, K.M. Jensen & S.J. Degitz, 2000. Effects of laboratory ultraviolet radiation and natural sunlight on survival and development of Rana pipiens. Can. J. Zool. 78: 1092–1100.Google Scholar
  7. Arai, K., 2001. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197: 205–228.Google Scholar
  8. Arakawa, T.,M. Takaya, K. Inoue, I. Takami & K. Yamashita, 1987. An examination of the condition for triploid induction by cold shock in red and black sea breams. Bull. Nagasaki Pref. Inst. Fish. 13: 25–30.Google Scholar
  9. Barbaro, A., P. Belvedere, N. Borgono, G. Bozzato, A. Francescon, A. Libertini, F. Meneghetti, A. Merlin & L. Colombo, 1996. Chromosome set manipulation in the gilthead seabream (Sparus aurata L.) and the European sea bass (Dicentrarchus labrax L.), pp. 227–230 in Sea Bass and Seabream Culture: Problems and Prospects. European Aquaculture Society, Oostende, Belgium.Google Scholar
  10. Bartley, D.M., 1997. Genetics and breeding in aquaculture: current status and trends. Cahiers Opt. Méditerran. 34: 13–30.Google Scholar
  11. Bass, E.L. & S.N. Sistrun, 1997. Effect of UV-A radiation on development and hatching success in Oryzias latipes, the Japanese medaka. Bull. Environ. Contam. Toxicol. 59: 537–542.Google Scholar
  12. Béland, F., H.I. Browman, C. Alonso Rodríguez & J.F. St-Pierre, 1999. Effect of solar ultraviolet radiation (280-400 nm) on the eggs and larvae of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 56: 1058–1067.Google Scholar
  13. Benfey, T.J., 1989. A bibliography of triploid fish, 1943-1988. Can. Tech. Rep. Fish. Aq. Sci. 1682: 33.Google Scholar
  14. Benfey, T.J., 1995. Ovarian development in triploid brook trout (Salvelinus fontinalis), p. 357. in Proceedings of the Fifth International Symposium on the Reproductive Physiology of Fish, edited by F. W. Goetz & P. Thomas. Austin, Texas, USA.Google Scholar
  15. Benfey, T.J., 1999. The physiology and behavior of triploid fishes. Rev. Fish. Sci. 7: 39–67.Google Scholar
  16. Benfey, T.J., H.M. Dye, I.I. Solar & E.M. Donaldson, 1989. The growth and reproductive endocrinology of adult triploid pacific salmonids. Fish Physiol. Biochem. 6: 113–120.Google Scholar
  17. Benfey, T.J. & A.M. Sutterlin, 1984. Growth and gonadal development in triploid landlocked Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 41: 1387–1392.Google Scholar
  18. Blanc, J.M., F. Vallée & M. Dorson, 2000. Survival, growth and dressing traits of triploid hybrids between rainbow trout and three charr species. Aqua. Res. 31: 349–358.Google Scholar
  19. Blázquez, M., M. Carrillo, S. Zanuy & F. Piferrer, 1999. Sex ratios in offspring of sex-reversed sea bass and the relationship between growth and phenotypic sex differentiation. J. Fish Biol. 55: 916–930.Google Scholar
  20. Blázquez, M., S. Zanuy, M. Carrillo & F. Piferrer, 1998. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 281: 207–216.Google Scholar
  21. Brämick, U., B. Puckhaber, H.J. Langholz & G. Hörstgen-Schwark, 1995. Testing of triploid tilapia (Oreochromis niloticus) under tropical pond conditions. Aquaculture 137: 343–353.Google Scholar
  22. Breton, B. & E. Sambroni, 1996. Steroid activation of the brainpituitary complex gonadotropic function in the triploid rainbow trout Oncorhynchus mykiss. Gen. Comp. Endocrinol. 101: 155–164.Google Scholar
  23. Bromage, N., 1988. Propagation and stock improvement, pp. 103–153 in Intensive Fish Farming, edited by J. Shepherd & N. Bromage. BSP Professional Books, Oxford.Google Scholar
  24. Bull, J.J., 1983. Evolution of Sex Determining Mechanism. The Benjamin/Cummings Publishing Company, Menlo Park, Ca, 316 pp.Google Scholar
  25. Carrasco, L.A., S. Doroshov, D.J. Penman & N. Bromage, 1998. Long term, quantitative analysis of gametogenesis in autotriploid rainbow trout, Oncorhynchus mykiss. J. Reprod. Fertility 113: 197–210.Google Scholar
  26. Carrillo, M., S. Zanuy, M. Blázquez, J. Ramos, F. Piferrer & E.M. Donaldson, 1993. Sex control and ploidy manipulation in sea bass, p. 512. in International Conference of Aquaculture 1993, EAS Spec. Publ. 19.Google Scholar
  27. Carrillo, M., S. Zanuy, M. Blázquez, J. Ramos, F. Piferrer & E.M. Donaldson, 1995b. Sex control and ploidy manipulation in sea bass, pp. 125–143 in OECD Documents, Environmental Impacts of Aquatic Biotechnology. OECD, Paris.Google Scholar
  28. Carrillo, M., S. Zanuy, F. Oyen, J. Cerdá, J.M. Navas & J. Ramos, 2000. Some criteria of the quality of the progeny as indicators of physiological broodstock fitness. Cahiers Opt. Méditerran. 47: 61–73.Google Scholar
  29. Carrillo, M., S. Zanuy, F. Piferrer, M. Blázquez, A. Felip, G. Martínez-Rodríguez & J. Ramos, 1999. Sex control in sea bass (Dicentrarchus labrax L.): present state and future prospects, pp. 22–32 in Proceedings of International Symposium on Progress and Prospect of Marine Biotechnology (ISPPMB 1998), edited by H.S. Xu & R.R. Colwell. China Ocean Press.Google Scholar
  30. Carrillo, M., S. Zanuy, F. Prat, J. Cerdá, J. Ramos, E. Mañanós & N. Bromage, 1995a. Sea bass (Dicentrarchus labrax), pp. 138–168 in Broodstock Managment and Egg and Larval Quality, edited by N.R. Bromage & R.J. Roberts. Blackwell Science, Oxford.Google Scholar
  31. Carter, R.E., G.C. Mair, D.O.F. Skibinski, D.T. Parkin & J.A. Beardmore, 1991. The application of DNA fingerprinting in the analysis of gynogenesis in tilapia. Aquaculture 95: 41–52.Google Scholar
  32. Carter, C.G., I.D. McCarthy, D.F. Houlihan, R. Johnstone, M.V. Walsingham & A.I. Mitchell, 1994. Food consumption, feeding behaviour, and growth of triploid and diploid Atlantic salmon, Salmo salar L., parr. Can. J. Zool. 72: 609–617.Google Scholar
  33. Cassani, J.R. & J.R. Caton, 1985. Induced triploidy in grass carp, Ctenopharyngodon idella Val. Aquaculture 46: 37–44.Google Scholar
  34. Cerdá, J., M. Carrillo, S. Zanuy, J. Ramos & M. De la Higuera, 1994. Influence of nutritional composition of diet on sea bass Dicentrarchus labrax L., reproductive performance and egg and larvae quality. Aquaculture 128: 345–361.Google Scholar
  35. Cherfas, N.B., B. Gomelsky, N. Ben-Dom, Y. Peretz & G. Hulata, 1994. Assessment of triploid common carp (Cyprinus carpio L.) for culture. Aquaculture 127: 11–18.Google Scholar
  36. Chourrout, D., 1987. Genetic manipulations in fish: review of methods, pp. 111–126 in Proc. World Symp. On Selection, Hybridization, and Genetic Engineering in Aquaculture, Bordeaux, 27-30 May, 1986, Vol. II, Berlin.Google Scholar
  37. Chourrout, D., B. Chevassus, F. Krieg, A. Happe, G. Burger & P. Renard, 1986. Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females-potential of tetraploid fish. Theor. Appl. Genet. 72: 193–206.Google Scholar
  38. Colihueque, N., P. Iturra, N.F. Díaz & A. Veloso, 1996. Further evidence of chromosome abnormalities in normal and haploid gynogenetic progenies of rainbow trout, Oncorhynchus mykiss. J. Exp. Zool. 276: 70–75.Google Scholar
  39. Colombo, L., A. Barbaro, A. Libertini, P. Benedetti, A. Francescon & I. Lombardo, 1995. Artificial fertilization and induction of triploidy and meiogynogenesis in the European sea bass, Dicentrarchus labrax L. J. Appl. Ichthyol. 11: 118–125.Google Scholar
  40. Colombo, L., A. Barbaro, A. Francescon, A. Libertini, P. Benedetti, L. Dalla Valle, M. Pazzaglia, L. Pugi, F. Argenton, M. Bortolussi & P. Belvedere, 1996. Potential gains through genetic improvements: chromosome set manipulation and hybridization, pp. 343–462 in Sea Bass and Seabream Culture: Problems and Prospects. European Aquaculture Society, Oostende, Belgium.Google Scholar
  41. Colombo, L., A. Barbaro, A. Francescon, A. Libertini, M. Bortolussi, F. Argenton, L. Dalla Valle, S. Vianello & P. Belvedere, 1997. Towards an integration between chromosome set manipulation, intergeneric hybridization and gene transfer in marine fish culture. Cahiers Opt. Méditerran. 34: 77–122.Google Scholar
  42. Curatolo, A., F. Gunnella, A. Santulli, N.P. Wilkins & V. D'Amelio, 1996. Chromosome set manipulation in the European sea bass (Dicentrarchus labrax L.): preliminary results, pp. 262–265 in Sea Bass and Seabream Culture: Problems and Prospects. European Aquaculture Society, Oostende, Belgium.Google Scholar
  43. Danzmann, R.G., T.R. Jackson & M.M. Ferguson, 1999. Epistasis in allelic expresion at upper temperature tolerance QTL in rainbow trout. Aquaculture 173: 45–58.Google Scholar
  44. Díaz, N.F., P. Iturra, A. Veloso, F. Estay & N. Colihueque, 1993. Physiological factors affecting triploid production in rainbow trout, Oncorhynchus mykiss. Aquaculture 114: 33–40.Google Scholar
  45. Dillon, J.C., D.J. Schill & D.M. Teuscher, 2000. Relative return to creel of triploid and diploid rainbow trout stocked in 18 Idaho streams. North Am. J. Fish. Manag. 20: 1–9.Google Scholar
  46. Don, J. & R.R. Avtalion, 1988. Production of F1 and F2 diploid gynogenetic tilapias and analysis of the ‘Hertwig curve’ obtained using ultraviolet irradiated sperm. Theor. Appl. Genet. 76: 253–259.Google Scholar
  47. Donaldson, E.M., 1996. Manipulation of reproduction in farmed fish. Anim. Reprod. Sci. 42: 381–392.Google Scholar
  48. Donaldson, E.M., 1997. The role of biotechnology in sustainable aquaculture, pp. 101–126 in Sustainable Aquaculture, edited by J.E. Bardach. Wiley.Google Scholar
  49. Ewing, R.R. & C. Scalet, 1991. Flow cytometric identification of larval triploid walleyes. Prog. Fish-Cult. 53: 177–180.Google Scholar
  50. Fast, A.W., T. Pewnim, R. Keawtabtim, R. Saijit, F.T. Te & R. Vejaratpimol, 1995. Comparative growth of diploid and triploid Asian catfish Clarias macrocephalus in Thailand. J. World Aquacult. Soc. 26: 390–395.Google Scholar
  51. Fauvel, C., O. Savoye, C. Dreanno, J. Cosson & M. Suquet, 1999. Characteristics of sperm of captive seabass in relation to its fertilization potential. J. Fish Biol., 54: 356–369.Google Scholar
  52. Felip, A., 2000. Inducción de la triploidía y la ginogénesis en la lubina (Dicentrarchus labrax L.): Efectos sobre el crecimiento y la fisiología reproductiva. Doctoral Thesis, University of Valencia, 263 pp.Google Scholar
  53. Felip, A., G. Martínez-Rodríguez, F. Piferrer, M. Carrillo & S. Zanuy, 2000. AFLP analysis confirms exclusive maternal genomic contribution of meiogynogenetic sea bass (Dicentrarchus labrax L.). Mar. Biotech. 2: 301–306.Google Scholar
  54. Felip, A., F. Piferrer, M. Carrillo & S. Zanuy, 1999a. The relationship between the effects of UV light and thermal shock on gametes and the viability of early developmental stages in a marine teleost fish, the sea bass (Dicentrarchus labrax L.). Heredity 83: 387–397.Google Scholar
  55. Felip, A., F. Piferrer, M. Carrillo & S. Zanuy, 2001a. Comparative growth performance between diploid and triploid sea bass (Dicentrarchus labrax L.) over the first four spawning seasons. J. Fish. Biol. 58: 76–88.Google Scholar
  56. Felip, A., F. Piferrer, M. Carrillo & S. Zanuy, 2001b. A comparison of the gonadal development and plasma levels of sex steroid hormones in diploid and triploid sea bass, Dicentrarchus labrax L. J. Exp. Zool. 290: 384–395.Google Scholar
  57. Felip, A., S. Zanuy, M. Carrillo, G. Martínez, J. Ramos & F. Piferrer, 1997. Optimal conditions for the induction of triploidy in the sea bass (Dicentrarchus labrax L.). Aquaculture 152: 287–298.Google Scholar
  58. Felip, A., S. Zanuy, M. Carrillo & F. Piferrer, 1999b. Growth and gonadal development in triploid sea bass (Dicentrarchus labrax L.) during the first 2 years of age. Aquaculture 173: 389–399.Google Scholar
  59. Flajshans, M., P. Ráb & S. Dobosz, 1992. Frequency analyses of active NORs in nuclei of artificially induced triploid fishes. Theor. Appl. Genet. 85: 68–72.Google Scholar
  60. Freund, F., G. Hörstgen-Schwark & W. Holtz, 1995. Plasma steroid hormones in adult triploid tilapia (Oreochromis niloticus), p. 35 in Proc. 5th Intern. Symp. Reproductive Physiology of Fish, edited by F. W. Goetz & P. Thomas. Austin, Texas, USA.Google Scholar
  61. Friars, G.W., I. McMillan, V.M. Quinton, F.M. O'Flynn, S.A. McGeachy & T.J. Benfey, 2001. Family differences in relative growth of diploid and triploid Atlantic salmon (Salmo salar L.). Aquacultutre 192: 23–29.Google Scholar
  62. Fujioka, Y., 1998. Survival, growth and sex ratios of gynogenetic diploid honmoroko. J. Fish Biol. 52: 430–442.Google Scholar
  63. Galbreath, P.F., W. St. Jean, V. Anderson & G.H. Thorgaard, 1994. Freshwater performance of all-female diploid and triploid Atlantic salmon. Aquaculture 128: 41–49.Google Scholar
  64. Galbreath P.F. & G.H. Thorgaard, 1994. Viability and freshwater performance of Atlantic salmon (Salmo salar) x brown trout (Salmo trutta) triploid hybrids. Can. J. Fish. Aquat. Sci. 51(1): 16–24.Google Scholar
  65. Galbreath P.F. & G.H. Thorgaard, 1995. Saltwater performance of all-female triploid Atlantic salmon. Aquaculture 138: 77–85.Google Scholar
  66. Galbusera, P., A.M. Volckaert & F. Ollevier, 2000. Gynogenesis in the African catfish Clarias gariepinus (Burchell, 1822). III. Induction of endomitosis and the presence of residual genetic variation. Aquaculture 185: 25–42.Google Scholar
  67. Garrido-Ramos, M., R. De la Herrán, R. Lozano, S. Cárdenas, C. Ruiz Rejón & M. Ruiz Rejón, 1996. Induction of triploidy in offspring of gilthead seabream (Sparus aurata) by mean of heat shock. J. Appl. Ichthyol. 12: 53–55.Google Scholar
  68. Gervai, J.S., A. Péter, L. Nagy, L. Horváth & V. Csányi, 1980. Induced triploidy in carp, Cyprinus carpio L. J. Fish Biol. 17: 667–671.Google Scholar
  69. Gervai, J. & V. Csányi, 1984. Artificial gynogenesis and mapping of gene-centromere distances in the paradise fish, Macropodus opercularis. Theor. Appl. Genet. 68: 481–485.Google Scholar
  70. Gomelsky, B., N.B. Cherfas, A. Gissis & G. Hulata, 1998. Induced diploid gynogenesis in white bass. Prog. Fish Cult. 60: 288–292.Google Scholar
  71. Gorshkov, S., G. Gorshkova, A. Hadani, H. Gordin & W. Knibb, 1998. Chromosome set manipulations and hybridization experiments in gilthead seabream (Sparus aurata). Isr. J. Aqua. Bamidgeh 50(3): 99–110.Google Scholar
  72. Gorshkova, G., S. Gorshkov, H. Gordin & W. Knibb, 1996. Sex control and gynogenetic production in European sea bass, Dicentrarchus labrax, pp. 288–290 in Seabass and Seabream Culture: Problem and Prospects. European Aquaculture Society, Oostende, Belgium.Google Scholar
  73. Gorshkova, G., S. Gorshkov, A. Hadani, H. Gordin & W. Knibb, 1995. Chromosome set manipulation in marine fish. Aquaculture 137: 157–158.Google Scholar
  74. Goudie, C.A., B.A. Simco, K.B. Davis & Q. Liu, 1995. Production of gynogenetic and polyploid catfish by pressureinduced chromosome set manipulation. Aquaculture, 133: 185–198.Google Scholar
  75. Gui, J.F., J. Jia, S.C. Liang & Y.G. Jiang, 1992. Meiotic chromosome behaviour in male triploid transparent coloured crucian carp, Carassius auratus L. J. Fish Biol. 41: 317–326.Google Scholar
  76. Guo, X., W.K. Hershberger & J.M. Myers, 1990. Growth and survival of intrastrain and interstrain rainbow trout (Oncorhynchus mykiss) triploids. J. World Aqua. Soc. 21: 250–256.Google Scholar
  77. Häder, D.P., 1986. The effect of enhanced solar UV-B radiation on motile microorganisms, pp. 223–233 in Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, Vol. G8, edited by R.C. Worrest & M.M. Caldwell. NATO ASI Series, Springer, Berlin.Google Scholar
  78. Häder, D.P., 1993. Risks of enhanced solar ultraviolet radiation for aquatic ecosystems, pp. 1–45 in Progress in Phycological Research, Vol. 9, edited by F.E. Round & D.J. Chapman. Biopress Bristol.Google Scholar
  79. Harrell, R.M.,W. Van Heukelem & J.H. Kerby, 1998. A comparison of triploid induction validation techniques. Prog. Fish Cult. 60: 221–226.Google Scholar
  80. Henken, A.M., A.M. Brunink & C.J.J. Richter, 1987. Differences in growth rate and feed utilization between diploid and triploid African catfish, Clarias gariepinus (Burchell 1822). Aquaculture 63: 233–242.Google Scholar
  81. Holmefjord, I. & T. Refstie, 1997. Induction of triploidy in Atlantic halibut by temperature shocks. Aqua. Intern. 5: 169–173.Google Scholar
  82. Howell, B.R., S.M. Baynes & D. Thompson, 1995. Progress towards the identification of the sex-determining mechanism of the sole, Solea solea (L.), by the induction of diploid gynogenesis. Aqua. Res. 26: 135–140.Google Scholar
  83. Hunter, G. A. & E.M. Donaldson, 1983. Hormonal sex control and its application to fish culture, pp. 223–275 in Fish Physiology, Vol. IXB, edited by W.S. Hoar, D.J. Randall & E.M. Donaldson. Academic Press, N.Y.Google Scholar
  84. Hussain, M.G., G.P.S. Rao, N.M. Humayun, C.F. Randall, D.J. Penman, D. Kime, N.R. Bromage, J.M. Myers & B.J. Mc-Andrew, 1995. Comparative performance of growth, biochemical composition and endocrine profiles in diploid and triploid tilapia Oreochromis niloticus L. Aquaculture 138: 87–97.Google Scholar
  85. Ihssen, P.E., L.R. McKay, I. McMillan & R.B. Phillips, 1990. Ploidy manipulation and gynogenesis in fishes: cytogenetic and fisheries applications. Trans. Am. Fish. Soc. 119: 698–717.Google Scholar
  86. Ijiri, K.I. & N. Egami, 1980. Hertwig effect caused by UVirradiation of sperm of Oryzias latipes (teleost) and its photoreactivation. Mutat. Res. 69: 241–248.Google Scholar
  87. Johnson, O.W., W.W. Dickhoff & F.M. Utter, 1986. Comparative growth and development of diploid and triploid coho salmon, Oncorhynchus kisutch. Aquaculture 57: 329–336.Google Scholar
  88. Johnstone, R. & R.J.M. Stet, 1995. The prodution of gynogenetic Atlantic salmon, Salmo salar L. Theor. Appl. Genet. 90: 819–826.Google Scholar
  89. Kavumpurath, S. & T.J. Pandian, 1990. Induction of triploidy in the zebrafish, Brachydanio rerio (Hamilton). Aquacult. Fish.Manag. 21: 299–306.Google Scholar
  90. Kavumpurath, S. & T.J. Pandian, 1992. The development of allmale sterile triploid fighting fish (Betta splendens regan) by integrating hormonal sex reversal of broodstock and chromosome-set manipulation. Isr. J. Aquacult. Bamidgeh 44 (4): 111–119.Google Scholar
  91. Kawamura, K., T. Ueda, K. Aoki & K. Hosoya, 1999. Spermatozoa in triploids of the rosy bitterling Rhodeus ocellatus ocellatus. J. Fish Biol. 55: 420–432.Google Scholar
  92. Kim, D.S., J.Y. Jo & T.Y. Lee, 1994. Induction of triploidy in mud loach (Misgurnus mizolepis) and its effect on gonadal development and growth. Aquaculture 120: 263–270.Google Scholar
  93. Kitamura, H., O.Y. Teong & T. Arakawa, 1991. Gonadal development of artificially induced triploid red sea bream Pagrus major. Nippon Suisan Gakkaishi 57: 1657–1660.Google Scholar
  94. Knibb, W., 2000. Genetic improvement of marine fish - which method for industry?. Aquacult. Res. 31: 11–23.Google Scholar
  95. Kocher, T.D., W.J. Lee, H. Sobolewska, D. Penman & B. McAndrew 1998. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148: 1225–1232.Google Scholar
  96. Koedprang, W. & U. Na-Nakorn, 2000. Preliminary study on performance of triploid Thai silver barb, Puntius gonionotus. Aquaculture 190: 211–221.Google Scholar
  97. Komen, J., G.F. Wiegertjes, V.J.T. Van Ginneken, E.H. Eding & C.J.J. Ritcher, 1992. The effects of heterozygous and homozygous gynogenetic inbreeding on sex, gonad development and fertility in common carp (Cyprinus carpio L.). Aquaculture 104: 51–66.Google Scholar
  98. Krisfalusi, M. & J.G. Cloud, 1997. Gonadal development in triploid rainbow trout (Oncorhynchus mykiss): testicular but not ovarian development. Biol. Reprod. 56: 105.Google Scholar
  99. Kucharczyk, D., P. Woznicki, M.J. Luczynski, M. Klinger & M. Luczynski, 1999. Ploidy level determination in genetically manipulated northern pike based on the number of active nucleoli per cell. North Am. J. Aquacult. 61: 38–42.Google Scholar
  100. Leary, R.F., F.W. Allendorf, K.L. Knudsen & G.H. Thorgaard, 1985. Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity 54: 219–225.Google Scholar
  101. Leclerc, G.M., B. Ely, X.L. Xu & R.M. Harrell, 1996. Gynogen production in hybrid striped bass. J. World Aqua. Soc. 27(1): 119–125.Google Scholar
  102. Lecommandeur, D., P. Haffray & L. Philippe, 1994. Rapid flow cytometry method for ploidy determination in salmonid eggs. Aquacult. Fish. Manag. 25: 345–350.Google Scholar
  103. Levanduski, M.J., J.C. Beck & J.E. Seeb, 1990. Optimal thermal shocks for induced diploid gynogenesis in chinook salmon (Oncorhynchus tshawytscha). Aquaculture 90: 239–250.Google Scholar
  104. Lin, F. & K. Dabrowski, 1996. Effects of sperm irradiation and heat shock on induction of gynogenesis in muskellunge (Esox masquinongy). Can. J. Fish. Aquat. Sci. 53: 2067–2075.Google Scholar
  105. Lincoln, R.F., 1981. The growth of female diploid and triploid plaice (Pleuronectes platessa) and plaice x flounder (Platichthys flesus) hybrids over one spawning season. Aquaculture 25: 259–268.Google Scholar
  106. Lincoln, R.F., D. Aulstad & A. Grammeltvedt, 1974. Attempted triploid induction in Atlantic salmon (Salmo salar) using cold shocks. Aquaculture 4: 287–297.Google Scholar
  107. Liu, Z.J., P. Li, B.J. Argue & R.A. Dunham, 1999a. Random ampli-fied polymorphic DNA markers: usefulness for gene mapping and analysis of genetic variation of catfish. Aquaculture 174: 59–68.Google Scholar
  108. Liu, Z., P. Li, H. Kucuktas, A. Nichols, G. Tan, X. Zheng, B.J. Argue & R.A. Dunham, 1999b. Development of amplified fragment length polymorphism (AFLP) markers suitable for genetic linkage mapping of catfish. Trans. Am. Fish. Soc. 128: 317–327.Google Scholar
  109. Liu, S., Y. Zhanzhou & Y. Wang, 1996. Sex hormone induction of sex reversal in the teleost Clarias lazera and evidence for female homogamety and male heterogamety. J. Exp. Zool. 276: 432–438.Google Scholar
  110. Magoulas, A., 1997. Application of molecular makers to aquaculture and broodstock management with special emphasis on microsatellite DNA. Cahiers Opt. Méditerran. 34: 153–168.Google Scholar
  111. Mair, G.C., 1993. Chromosome-set manipulation in tilapia-techniques, problems and prospects. Aquaculture 111: 227–244.Google Scholar
  112. Mair, G.C., J.S. Abucay, D.O.F. Skibinski, T.A. Abella & J.A. Beardmore, 1997. Genetic manipulation of sex ratio for the largescale production of all-male tilapia, Oreochromis niloticus. Can. J. Fish. Aquat. Sci. 54: 396–404.Google Scholar
  113. Mair, G.C., A.G. Scott, D.J. Penman, J.A. Beardmore & D.O.F. Skibinski, 1991a. Sex determination in the genus Oreochromis. 1. Sex reversal, gynogenesis and triploidy in O. niloticus (L.). Theor. Appl. Genet. 82: 144–152.Google Scholar
  114. Mair, G.C., A.G. Scott, D.J. Penman, D.O.F. Skibinski & J.A. Beardmore, 1991b. Sex determination in the genus Oreochromis. 2. Sex reversal, hybridisation, gynogenesis and triploidy in O. aureus Steindachner. Theor. Appl. Genet. 82: 153–160.Google Scholar
  115. Malison, J.A. & M.A.R. García-Abiado, 1996. Sex control and ploidy manipulation in yellow perch (Perca flavescens) and walleye (Stizostedium vitreum). J. Appl. Ichthyol. 12: 189–194.Google Scholar
  116. Malison, J.A., L.S. Procarione, J.A. Held, T.B. Kayes & C.H. Amundson, 1993. The influence of triploidy and heat and hydrostatic pressure shocks on the growth and reproductive development of juvenile yellow perch (Perca flavescens). Aquaculture 116: 121–133.Google Scholar
  117. McGeachy, S.A., T.J. Benfey & G.W. Friars, 1995. Freshwater performance of triploid Atlantic salmon (Salmo salar) in New Brunswick aquaculture. Aquaculture 137: 333–341.Google Scholar
  118. McLean, E., E.M. Donaldson, E. Teskeredzic & L.M. Souza, 1993. Growth enhancement following dietary delivery of recombinant porcine somatotropin to diploid and triploid coho salmon (Oncorhynchus kisutch). Fish Physiol. Biochem. 11: 363–369.Google Scholar
  119. McLean, E., M.D. Sadar, R.H. Devlin, L.M. Souza & E.M. Donaldson, 1991. Promotion of growth in diploid and triploid coho salmon with parenteral delivery of a recombinant porcine somatotropin. Aquat. Liv. Res. 4: 155–160.Google Scholar
  120. Miller, G.D., J.E. Seeb, B.G. Bue & S. Sharr, 1994. Saltwater exposure at fertilization induces ploidy alterations, including mosaicism, in salmonids. Can. J. Fish. Aquat. Sci. 51(1): 42–49.Google Scholar
  121. Mol, K., N. Byamungu, B. Cuisset, Z. Yaron, M. Ofir, Ch. Mélard, M. Castelli & E.R. Kühn, 1994. Hormonal profile of growing male and female diploids and triploids of the blue tilapia, Oreochromis aureus, reared in intensive culture. Fish Physiol. Biochem. 13: 209–218.Google Scholar
  122. Murata, O., 1998. Studies on the breeding of cultivated marine fishes. Bull. Fish. Lab. Kinki Univ. 6: 1–101 (in Japaness with abstract in English).Google Scholar
  123. Myers, J.M. & W.K. Hershberger, 1991. Early growth and survival of heat-shocked and tetraploid-derived triploid rainbow trout (Oncorhynchus mykiss). Aquaculture 96: 97–107.Google Scholar
  124. Nagy, A. & V. Csányi, 1982. Changes of genetic parameters in successive gynogenetic generations and some calculations for carp gynogenesis. Theor. Appl. Genet. 63: 105–110.Google Scholar
  125. Nagy, A., K. Rajki, L. Horváth & V. Csányi, 1978. Investigation on carp, Cyprinus carpio L. gynogenesis. J. Fish Biol. 13: 215–224.Google Scholar
  126. Nakamura, M., Y. Nagahama, M. Iwahashi & M. Kojima, 1987. Ovarian structure and plasma steroid hormones of triploid female rainbow trout. Nippon Suisan Gakkaishi 53: 1105.Google Scholar
  127. Nakamura, M., F. Tsuchiya, M. Iwahashi & Y. Nagahama, 1993. Reproductive characteristics of precociously mature triploid male masu salmon, Oncorhynchus masou. Zool. Sci. 10: 117–125.Google Scholar
  128. Na-Nakorn, U., 1995. Comparison of cold and heat shocks to induce diploid gynogenesis in thai walking catfish (Clarias macrocephalus) and performances of gynogens. Aquat. Living Resour. 8: 333–341.Google Scholar
  129. O'Keefe, R.A. & T.J. Benfey, 1997. The feeding response of diploid and triploid Atlantic salmon and brook trout. J. Fish Biol. 51: 989–997.Google Scholar
  130. Oliva-Teles, A. & S.J. Kaushik, 1990. Growth and nutrient utilization by 0+ and 1+ triploid rainbow trout, Oncorhynchus mykiss. J. Fish Biol. 37: 125–133.Google Scholar
  131. Oshiro, T., 1987. Sex ratios of diploid gynogenetic progeny derived from five different females of goldfish. Nippon Suisan Gakkaishi 53: 10.Google Scholar
  132. Palti, Y., J.J. Li & G.H. Thorgaard, 1997. Improved efficiency of heat and pressure shocks for producing gynogenetic rainbow trout. Prog. Fish Cult. 59(1): 1–13.Google Scholar
  133. Pandian, T.J. & Varadaraj, K., 1990. Development of monosex female Oreochromis mossambicus broodstock by integrating gynogenetic technique with endocrine sex reversal. J. Exp. Zool. 255: 88–96.Google Scholar
  134. Parsons, J.E., R.A. Busch, G.H. Thorgaard & P.D. Scheerer, 1986. Increased resitence of triploid rainbow trout x coho salmon hybrids to infectious hematopoietic necrosis virus. Aquaculture 57: 337–344.Google Scholar
  135. Parsons, G.R. & K. Meals, 1997. Comparison of triploid hybrid crappie and diploid white crappie in experimental ponds. North Am. J. Fish. Manag. 17: 803–806.Google Scholar
  136. Partis, L. & R.J. Wells, 1996. Identification of fish species using random amplified polymorphic DNA (RAPD). Mol. Cell Probes 10: 435–441.Google Scholar
  137. Pavlidis, M., G. Koumoundouros, A. Sterioti, S. Somarakis, P. Divanach & M. Kentouri, 2000. Evidence of temperaturedependent sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 287: 225–232.Google Scholar
  138. Peek, A.S., P.A. Wheeler, C.O. Ostberg & G.H. Thorgaard, 1997. A minichromosome carrying a pigmentation gene and brook trout DNA sequences in transgenic rainbow trout. Genome 40: 594–599.Google Scholar
  139. Penman, D.J., D.O.F. Skibinski & J.A. Beardmore, 1987. Survival, growth rate and maturity in triploid tilapia, pp. 277–288 in Selection, Hybridization and Genetic Engineering in Aquaculture, edited by K. Tiews. Heenemann Verlags, Berlin.Google Scholar
  140. Peruzzi, S. & B. Chatain, 2000. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: relative efficiency of methods and parental variability. Aquaculture 189: 23–37.Google Scholar
  141. Piferrer, F., 2001. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197: 229–281.Google Scholar
  142. Piferrer, F., T.J. Benfey & E.M. Donaldson, 1994. Gonadal morphology of sex reversed triploid and gynogenetic diploid coho salmon (Oncorhynchus kisutch). J. Fish Biol. 45: 541–553.Google Scholar
  143. Piferrer, F., R.M. Cal, B. Álvarez-Blázquez, L. Sánchez & P. Martínez, 2000. Induction of triploidy in the turbot (Scophthalmus maximus). I. Ploidy determination and the effects of cold shocks. Aquaculture 188: 79–90.Google Scholar
  144. Piferrer, F., A. Felip & M. Blázquez, 1995. Control genético y fisiológico de las proporciones de sexos de los teleósteos y su aplicación en acuicultura, pp. 75–109 in Aulas del Mar, Acuicultura, Biología Marina, edited by S. Zamora, B. Agulleiro & P. García. Murcia, Spain.Google Scholar
  145. Piferrer, F. & L.C. Lim, 1997. Application of sex reversal technology in ornamental fish culture. Aqua. Sci. Conserv. 1: 113–118.Google Scholar
  146. Planas, M. & I. Cunha, 1999. Larviculture of marine fish: problems and perspectives. Aquaculture 177: 171–190.Google Scholar
  147. Pongthana, N., D.J. Penman, P. Baoprasertkul, M.G. Hussain, M.S. Islam, S.F. Powell & B.J. McAndrew, 1999. Monosex female production in the silver barb (Puntius gonionotus Bleeker). Aquaculture 173: 247–256.Google Scholar
  148. Pongthana, N., D.J. Penman, J. Karnasuta & B.J. McAndrew, 1995. Induced gynogenesis in the silver barb (Puntius gonionotus Bleeker) and evidence for female homogamety. Aquaculture 135: 267–276.Google Scholar
  149. Price, D.J., 1984. Genetics of sex determination in fishes - a brief review, pp. 77–89 in Fish Reproduction: Strategies and Tactis, edited by G.W. Potts & R.J. Wooton. Academic Press, London.Google Scholar
  150. Purdom, C.E., 1972. Induced polyploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platichthys flesus). Heredity 29: 11–24.Google Scholar
  151. Refstie, T., J. Stoss & E.M. Donaldson, 1982. Production of all female coho salmon (Oncorhynchus kisutch) by diploid gynogenesis using irradiated sperm and cold shock. Aquaculture 29: 67–82.Google Scholar
  152. Reventós, J. & F. Munell, 1997. Transgenic animal models in reproductive endocrine research. Euro. J. Endocrinol. 136: 566–580.Google Scholar
  153. Rosenmann, A., J. Wahrman, C. Richler, R. Voss, A. Persitz & B. Goldman, 1985. Meiotic association between the XY chromosomes and unpaired autosomal elements as a cause of human male sterility. Cytogenet. Cell Genet. 39: 19–29.Google Scholar
  154. Sakamoto, T., R.G. Danzmann, N. Okamoto, M.M. Ferguson & P.E. Ihssen, 1999. Linkage analysis of quantitative trait loci associated with spawning time rainbow trout (Oncorhynchus mykiss). Aquaculture 173: 33–43.Google Scholar
  155. Sheehan, R.J., S.P. Shasteen, A.V. Suresh, A.R. Kapuscinski & J. Seeb, 1999. Better growth in all-female diploid and triploid rainbow trout. Trans. Am. Fish. Soc. 128: 491–498.Google Scholar
  156. Shelton, W.L., S.D. Mims, J.A. Clark, A.E. Hiott & Ch. Wang, 1997. A temperature-dependent index of mitotic interval (τo) for chromosome manipulation in paddlefish and shovelnose sturgeon. Prog. Fish Cult. 59: 229–234.Google Scholar
  157. Smith, L.T. & H.L. Lemoine, 1979. Colchicine-induced polyploidy in brook trout. Prog. Fish Cult. 41: 86–88.Google Scholar
  158. Smoker, W.W., P.A. Crandell & M. Matsuoka, 1995. Second polar body retention and gynogenesis induced by thermal shock in pink salmon, Oncorhynchus gorbuscha (Walbaum). Aqua. Res. 26: 213–219.Google Scholar
  159. Solar, I.I., E.M. Donaldson & D. Douville, 1991. A bibliography of gynogenesis and androgenesis in fish (1913-1989). Can.Tech. Rep. Fish. Aq. Sci. No 1788, 41 pp.Google Scholar
  160. Solar, I.I., W.E. Hajen & E.M. Donaldson, 1992. A bibliography of tetraploidy in fish (1964-1991). Can.Tech. Rep. Fish. Aq. Sci. No 1901, 22 pp.Google Scholar
  161. Sorbera, L., C.C. Mylonas, S. Zanuy, M. Carrillo & Y. Zohar, 1996. Sustained administration of GnRHa increases milt volume without altering sperm counts in the sea bass. J. Exp. Zool. 276: 361–368.Google Scholar
  162. Stanley, J.G., 1976. Female homogamety in grass carp (Ctenopharyngodon idella) determined by gynogenesis. J. Fish. Res. Board Can. 33: 1372–1374.Google Scholar
  163. Stanley, J.G. & J.B. Jones, 1976. Morphology of androgenetic and gynogenetic grass carp, Ctenopharyngodon idella (Valenciennes). J. Fish Biol. 9: 523–528.Google Scholar
  164. Streisinger, G., F. Singer, C. Walker, D. Knauber & N. Dower, 1986. Segregation analyses and gene-centromere distances in zebrafish. Genetics 112: 311–319.Google Scholar
  165. Sugama, K., N. Taniguchi, S. Seki, H. Nabeshima & Y. Hasegawa, 1990. Gynogenetic diploid production in the red sea bream using UV-irradiated sperm of black sea bream and heat shock. Nippon Suisan Gakkaishi 56: 1427–1433.Google Scholar
  166. Sugama, K., N. Taniguchi, S. Seki & H. Nabeshima, 1992. Survival, growth and gonadal development of triploid red sea bream, Pagrus major (Temminck Schlegel): use of allozyme markers for ploidy and family identification. Aquat. Fish. Manag. 23: 149–159.Google Scholar
  167. Sumpter, J.P., R.F. Lincoln, V.J. Bye, J.F. Carragher & P.Y. Le Bail, 1991. Plasma growth hormone levels during sexual maturation in diploid and triploid rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 83: 103–110.Google Scholar
  168. Suquet, M., R. Billard, J. Cosson, G. Dorange, L. Chauvaud, C. Mugnier & C. Fauvel, 1994. Sperm features in turbot (Scophthalmus maximus): a comparison with other freshwater and marine fish species. Aquat. Living Resour. 7: 283–294.Google Scholar
  169. Suzuki, R., T. Oshiro & T. Nakanishi, 1985. Survival, growth and fertility of gynogenetic diploids induced in the cyprinid loach, Misgurnus anguillicaudatus. Aquaculture 48: 45–55.Google Scholar
  170. Tabata, K., 1991. Induction of gynogenetic diploid males and presumption of sex determination mechanisms in the hirame Paralichthys olivaceus. Nippon Suisan Gakkaishi 57(5): 845–850.Google Scholar
  171. Takagi, M. & N. Taniguchi, 1995. Random amplified polymorphic DNA (RAPD) for identification of three species of Anguilla, A. japonica, A. australis and A. bicolor. Fish. Sci. 61(5): 884–885.Google Scholar
  172. Teplitz, R.L., J.E. Joyce, S.I. Doroshov & B.H. Min, 1994. A preliminary ploidy analysis of diploid and triploid salmonids. Can. J. Fish. Aquat. Sci. 51(1): 38–41.Google Scholar
  173. Thorgaard, G.H., 1983. Chromosome set manipulation and sex control in fish, pp. 405–434 in Fish Physiology, Vol. IXB, edited by W.H. Hoar, D.J. Randall & E.M. Donaldson. Academic Press, N.Y.Google Scholar
  174. Thorgaard, G.H., 1995. Biotechnological approaches to broodstock management, pp. 76–93 in Broodstock Managment and Egg and Larval Quality, edited by N.R. Bromage & R.J. Roberts. Blackwell Science, Oxford.Google Scholar
  175. Thorgaard, G.H. & S.K. Allen, Jr., 1987. Chromosome manipulation and markers in fishery management, pp 319–336 in Population Genetics and Fishery Management, edited by N. Ryman & F.M. Utter. University of Seattle, Seattle.Google Scholar
  176. Thorgaard, G.H. & J.E. Disney, 1990. Chromosome preparation and analysis, in Methods for Fish Biology, edited by C.B. Schreck & P.B. Moyle. Bethesda, Maryland, USA. Am. Fish. Soc. 6: 171–190.Google Scholar
  177. Thorgaard, G.H., P.S. Rabinovitch, M.W. Shen, G.A.E. Gall, J. Propp, & F.M. Utter, 1982. Triploid rainbow trout identified by flow cytometry. Aquaculture 29: 305–309.Google Scholar
  178. Tiwary, B.K., R. Kirubbagaran & A.K. Ray, 2000. Gonadal development in triploid Heteropneustes fossilis. J. Fish Biol. 57: 1343–1348.Google Scholar
  179. Tudor, M. & Katavic, 1999. Body abnormalities in relation to size and sex of laboratory reared European sea bass Dicentrarchus labrax L. Acta Adriat. 40: 67–74.Google Scholar
  180. Utter, F.M., O.W. Johnson, G.H. Thorgaard & P.S. Rabinovitch, 1983. Measurement and potential applications of induced triploidy in Pacific salmon. Aquaculture 35: 125–135.Google Scholar
  181. Valenti, R.J., 1975. Induced polyploidy in Tilapia aurea Steindachner by means of temperature shock treatment. J. Fish Biol. 7: 519–528.Google Scholar
  182. Van Eenennaam, J.P., R.K. Stocker, R.G. Thiery, N.T. Hagstrom & S.I. Doroshov, 1990. Egg fertility, early development and survival from crosses of diploid female x triploid male grass carp (Ctenopharyngodon idella). Aquaculture 86: 111–125.Google Scholar
  183. Van Eenennaam, A.L., J.P. Van Eenennaam, J.F. Medrano & S.I. Doroshov, 1996. Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon (Acipenser transmontanus Richardson). Aquaculture 147: 177–189.Google Scholar
  184. Váradi, L., I. Benkó, J. Varga & L. Horváth, 1999. Induction of diploid gynogenesis using interspecific sperm and production of tetraploids in African catfish, Clarias gariepinus Burchell (1822). Aquaculture 173: 401–411.Google Scholar
  185. Várkonyi, E., M. Bercsényi, C. Ozouf-Costaz & R. Billard, 1998. Chromosomal and morphological abnormalities caused by oocyte ageing in Silurus glanis. J. Fish Biol. 52: 899–906.Google Scholar
  186. Volckaert, F.A.M., P.H.A.A. Galbusera, B.A.S. Hellemans, C. Van den Haute, D. Vanstaen & F. Ollevier, 1994. Gynogenesis in the African catfish (Clarias gariepinus). I. Induction of meiogynogenesis with thermal and pressure shocks. Aquaculture 128: 221–233.Google Scholar
  187. Wattendorf, R.J., 1986. Rapid identification of triploid grass carp with a coulter counter and channelyzer. Prog. Fish Cult. 48: 125–132.Google Scholar
  188. Williams, D.J., S. Kazianis & R.B. Walter, 1998. Use of random amplified polymorphic DNA (RAPD) for identification of largemouth bass subspecies and their intergrades. Trans. Am. Fish. Soc. 127: 825–832.Google Scholar
  189. Wills, P.S., R.J. Sheehan & S.K. Allen, Jr, 2000. Reduced reproductive capacity in diploid and triploid hybrid sunfish. Trans. Am. Fish. Soc. 129: 30–40.Google Scholar
  190. Wohlfarth, G., 1990. The tools of genetics in aquaculture, pp. 213 in Mediterranean Aquaculture, edited by R. Flos, L. Tort & P. Torres. Ellis Horwood, N.Y.Google Scholar
  191. Wolters, W., G.S. Libey & C.L. Chrisman, 1982. Effect of triploidy on growth and gonad development of channel catfish. Trans. Am. Fish. Soc. 111: 102–105.Google Scholar
  192. Wu, C., R. Ye, R. Chen & X. Liu, 1993. An artificial multiple triploid carp and its biological characteristics. Aquaculture 111: 255–262.Google Scholar
  193. Yamamoto, E., 1999. Studies on sex-manipulation and production of cloned populations in hirame, (Temminck Schlegel). Aquaculture 173: 235–246.Google Scholar
  194. Yamazaki, F., 1983. Sex control and manipulation in fish. Aquaculture 33: 329–354.Google Scholar
  195. Young, W.P., P.A. Wheeler, V.H. Coryell, P. Keim & G.H. Thorgaard, 1998. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 148: 839–850.Google Scholar
  196. Zanuy, S., M. Carrillo, M. Blázquez, J. Ramos, F. Piferrer & E.M. Donaldson, 1994. Production of monosex and sterile sea bass by hormonal and genetic approaches. Publ. Assoc. Devélop. Aquac. 119: 409–423.Google Scholar
  197. Zhang, Q. & K. Arai, 1999. Aberrant meiosis and viable aneuploid progeny of induced triploid loach (Misgurnus anguillicaudatus) when crossed to natural tetraploids. Aquaculture 175: 63–76.Google Scholar
  198. Zohar, Y., 1989. Endocrinology and fish farming: aspects in reproduction, growth and smoltification. Fish Physiol. Biochem. 7: 395–450.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • A. Felip
    • 1
  • S. Zanuy
    • 2
  • M. Carrillo
    • 3
  • F. Piferrer
    • 4
  1. 1.Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre la SalRibera de Cabanes, CastellónSpain
  2. 2.Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre la SalRibera de Cabanes, CastellónSpain
  3. 3.Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre la SalRibera de Cabanes, CastellónSpain
  4. 4.Institut de Ciències del Mar, CSICBarcelonaSpain

Personalised recommendations