Skip to main content
Log in

Microsatellite-centromere mapping in the loach, Misgurnus anguillicaudatus

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Primer sets for 15 polymorphic microsatellite loci were developed in the loach, Misgurnus anguillicaudatus (Cobitidae) by molecular cloning and sequencing techniques. Mendelian inheritance was confirmed for the 15 loci by examining the genotypic segregation produced with the primer sets in two full-sib families. The loci were mapped in relation to their centromere in four gynogenetic diploid lines, which were induced by inhibition of the second meiotic division after fertilization with genetically inert sperm. Microsatellite-centromere recombination rates ranged between 0.06 and 0.95 under the assumption of complete interference. Thus, these loci are distributed from the centromeres to the telomeres of their respective chromosomes. The success of mitotic gynogenesis, produced by suppression of the first cleavage, was verified by homozygosity at three diagnostic microsatellite loci that exhibited high gene-centromere meiotic recombination rates in the same family. The differences in heterozygosity levels observed with these markers were attributed to differences in the temporal application of heat shock following inert sperm activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, J.J., S. Seki, A. Cnaani, S. Poompung, E.M. Hallermann, N. Umiel, G. Hulata, G.A.E. Gall & B. May, 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185: 43–56.

    Google Scholar 

  • Aliah, R.S. & N. Taniguchi, 2000. Gene-centromere distance of six microsatellite DNA loci in gynogenetic nishikigoi (Cyprinus carpio). Suisan-Ikushu (Fish Genet. Breed Sci.) 29: 113–119.

    Google Scholar 

  • Allendorf, F.W., J.E. Seeb, K.L. Knudsen, G.H. Thorgaard & R.F. Leary, 1986. Gene-centromere mapping of 25 loci in rainbow trout. J. Hered. 77: 307–312.

    Google Scholar 

  • Arai, K., 2000. Chromosome manipulation in aquaculture: recent progress and perspective. Suisanzoshoku 48: 295–303.

    Google Scholar 

  • Arai, K., 2001. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197: 205–228.

    Google Scholar 

  • Arai, K., K. Fujino, N. Sei, T. Chiba & M. Kawamura, 1991. Estimating rate of gene-centromere recombination at 11 isozyme loci in the Salvelinus species. Nippon Suisan Gakkaishi 57: 1043–1055.

    Google Scholar 

  • Arai, K., M. Ikeno & R. Suzuki, 1995. Production of androgenetic diploid loach Misgurnus anguillicaudatus using spermatozoa of natural tetraploids. Aquaculture 137: 131–138.

    Google Scholar 

  • Arai, K., K. Matsubara & R. Suzuki, 1991a. Karyotype and erythrocyte size of spontaneous tetraploidy and triploidy in the loach Misgurnus anguillicaudatus. Nippon Suisan Gakkaishi 57: 2167–2172.

    Google Scholar 

  • Arai, K., K. Matsubara & R. Suzuki, 1991b. Chromosomes and developmental potential of progeny of spontaneous tetraploid loach Misgurnus anguillicaudatus. Nippon Suisan Gakkaishi 57: 2173–2178.

    Google Scholar 

  • Arai, K., K. Matsubara & R. Suzuki, 1993. Production of polyploids and viable gynogens using spontaneously occurring tetraploid loach, Misgrunus anguillicaudatus. Aquaculture 119: 11–23.

    Google Scholar 

  • Arai, K. & M. Mukaino, 1997. Clonal nature of gynogenetically induced progeny of triploid (diploid x tetraploid) loach, Misgurnus anguillicaudatus (Pisces: Cobitididae). J. Exp. Zool. 278: 412–421.

    Google Scholar 

  • Arai, K. & M. Mukaino, 1998. Electrophoretic analysis of the diploid progenies from triploid x diploid crosses in the loach, Misgurnus anguillicaudatus (Pisces: Cobitidae). J. Exp. Zool. 280: 368–374.

    Google Scholar 

  • Arai, K., K. Taniura & Q. Zhang, 1999. Production of second generation progeny of hexaploid loach. Fisheries Sci. 65: 186–492.

    Google Scholar 

  • Chambers, G.K. & E.S. MacAvoy, 2000. Microsatellites: consensus and controversy. Comp. Biochem. Physiol. Part B, 126: 455–476.

    Google Scholar 

  • Cherfas, N.B., 1977. Investigation on radiation-induced diploid gynogenesis in carp. II. Segregation with respect to several morphological characters in gynogenetic progenies. Genetika 13: 811–820

    Google Scholar 

  • Estoup, A., P. Presa, F. Krieg, D. Vaiman & R. Guyomard, 1993. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71: 488–496.

    Google Scholar 

  • Guyomard, R., 1984. High level of residual heterozygosity in gynogenetic rainbow trout, Salmo gairdneri, Richardson. Theor. Appl. Genet. 67: 307–316.

    Google Scholar 

  • Khan, M.R. & K. Arai, 2000. Allozyme variation and genetic differentiation in the loach Misgurnus anguillicaudatus. Fisheries Sci. 66: 211–222.

    Google Scholar 

  • Knapik, E.W., A. Goodman, M. Ekker, M. Chevrette, J. Delgado, S. Neuhauss, N. Shimoda, W. Driever, M.C. Fishman & H.J. Jacob, 1998. A microsatellite linkage map for zebrafish (Danio rerio). Nature Genet. 18: 338–343.

    Google Scholar 

  • Kocher, T.D., W.-J. Lee, H. Sobolewska, D. Penman & B. Mcandrew, 1998 A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148: 1225–1232.

    Google Scholar 

  • Liu, Q., C.A. Goudie, B.A. Simco, K.B. Davis & D.C. Morizot, 1992. Gene-centromere mapping of six enzyme loci in gynogenetic channel catfish. J. Hered. 83: 245–248.

    Google Scholar 

  • Matsubara, K., K. Arai & R. Suzuki, 1995. Survival potential and chromosomes of progeny of triploid and pentaploid females in the loach Misgurnus anguillicaudatus. Aquaculture 131: 37–48.

    Google Scholar 

  • Naruse, K. & A. Shima, 1989. Linkage relationships of gene loci in the Medaka, Oryzias latipes (Pisces: Oryziatidae), determined by backcrosses and gynogenesis. Biochem. Genet. 27: 183–198.

    Google Scholar 

  • Postlethwait, J.H., S.L. Johnson, C.N. Midson, W.S. Talbot, M. Gates, E.W. Ballinger, D. Africa, R. Andrews, T. Carl, J.S. Eisen, S. Horne, C.B. Kimmel, M. Hutchinson, M. Johnson & A. Rodriguez, 1994. A genetic linkage map for the zebrafish. Science 264: 699–703.

    Google Scholar 

  • Postlethwait, J.H., Y-L. Yan, M.A. Gates, S. Horne, A. Amores, A. Brownlie, A. Donovan, E.S. Egan, A. Force, Z. Gong, C. Goutel, A. Fritz, R. Kelsh, E. Knapik, E. Liao, B. Paw, D. Ransom, A. Singer, M. Thompson, T.S. Abduljabbar, P. Yelick, D. Beier, J.-S. Joly, D. Larhammar, F. Rosa, M. Westerfield, L.I. Zon, S.L. Johnson & W.S. Talbot, 1998. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18: 345–349.

    Google Scholar 

  • Sakamoto, T., R.G. Danzmann, K. Gharbi, P. Howard, A. Ozaki, S.K. Khoo, R.A. Woran, N. Okamoto, M.M. Ferguson, L-L. Holm, R. Guyomard & B. Hoyheim, 2000. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155: 1331–1345.

    Google Scholar 

  • Sanger, F., S. Nicklen & A.R. Coulson, 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 77: 5463–5467.

    Google Scholar 

  • Seeb, J. E & L.W. Seeb, 1986. Gene mapping of isozyme loci in chum salmon. J. Hered. 77: 399–402.

    Google Scholar 

  • Shimoda, N., E.W. Knapik, J. Ziniti, C. Sim, E. Yamada, S. Kaplan, D. Jackson, F. de Sauvage, H. Jacob & M.C. Fishman, 1999. Zebrafish genetic map with 2000 microsatellite markers. Genomics 5: 219–232.

    Google Scholar 

  • Streisinger, G., F. Singer, C. Walker, D. Knauber & N. Dower, 1986. Segregation analysis and gene-centromere distance in zebrafish. Genetics 112: 311–319.

    Google Scholar 

  • Suwa, M., K. Arai & R. Suzuki, 1994. Suppression of the first cleavage and cytogeneticx studies on the gynogenetic loach. Fisheries Sci. 60: 673–681.

    Google Scholar 

  • Suzuki, R., T. Oshiro & T. Nakanishi, 1985. Survival, growth and fertility of gynogenetic diploids induced in the cyprinid loach, Misgurnus anguillicaudatus. Aquaculture 48: 45–55.

    Google Scholar 

  • Taniguchi, N., A. Kijima & J. Fukai, 1987. High heterozygosity at Gpi-1 in gynogenetic diploids and triploids of ayu Plecoglossus altivelis. Nipon Suisan Gakkaishi 53: 717–720.

    Google Scholar 

  • Taniguchi, N., S. Seki, J. Fukai & A. Kijima, 1988. Induction of two types of gynogenetic diploids by hydrostatic pressure shock and verification by genetic marker in ayu. Nippon Suisan Gakkaishi 54: 1483–1491.

    Google Scholar 

  • Thompson, D. & A.P. Scott, 1984. An analysis recombination data in gynogenetic diploid rainbow trout. Heredity 53: 441–452.

    Google Scholar 

  • Thorgaard, G.H., F.W. Allendorf & K.L. Knudsen, 1983. Genecentromere mapping in rainbow trout: high interference over long map distance. Genetics 103: 771–783.

    Google Scholar 

  • Wright, J.M., 1993. DNA fingerprinting in fishes, pp. 57–91 in Biochemistry and Molecular Biology of Fishes, Vol. 2, edited by P.W. Hochachka & T. Mommsen. Elsevier, New York.

    Google Scholar 

  • Wright, J.M. & P. Bentzen, 1995. 7. Microsatellites: genetic markers for the future. pp. 117–121 in Moleclar Genetics in Fisheries, edited by G.R. Carvalho & T.J. Pitcher. Chapman & Hall, London.

    Google Scholar 

  • Zhang, Q. and K. Arai, 1996. DNA contents of somatic cells and spermatozoa in the progeny of natural tetraploid loach. Fisheries Sci. 62: 870–877.

    Google Scholar 

  • Zhang, Q. & K. Arai, 1999. Distribution and reproductive capacity of natural triploid individals and occurrence of unreduced eggs as a cause of polyploidization in the loach, Misgurnus anguillicaudatus. Ichthyol. Res. 46: 153–161.

    Google Scholar 

  • Zhang, Q., K. Arai & M. Yamashita, 1998. Cytogenetic mechanisms for triploid and haploid egg formation in the triploid loach Misgurnus anguillicaudatus. J. Exp. Zool. 281: 608–619.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morishima, K., Nakayama, I. & Arai, K. Microsatellite-centromere mapping in the loach, Misgurnus anguillicaudatus . Genetica 111, 59–69 (2001). https://doi.org/10.1023/A:1013701128529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013701128529

Navigation