Advertisement

Plant Foods for Human Nutrition

, Volume 57, Issue 1, pp 53–61 | Cite as

Vitamin C and quercetin modulate DNA-damaging effect of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)

  • J. Błasiak
  • A. Trzeciak
  • A. Gąsiorowska
  • J. Drzewoski
  • E. Małecka-Panas
Article

Abstract

The effects of natural compounds, vitamin C and quercetin, present in fruitsand vegetables, on the DNA damaging activity of a food carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) were examinedusing the comet assay. Vitamin C, at a concentration of 50 μM,inhibited MNNG-induced DNA damage in human lymphocytes. Quercetin,up to a concentration of 10 μM, increased the extent of DNA damage,but at concentrations above 10 μM decreased damage below controlvalues. Furthermore, quercetin had a strong antioxidant activity againstoxidative damage evoked by H2O2 at 10 μM. The resultsobtained suggest that vitamin C and quercetin may have anti- orpro-oxidative properties depending on the state of the cell.

Comet assay DNA damage Lymphocytes MNNG Quercetin Vitamin C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    US Department of Health and Human Service (1992) National toxicology program technical report on the toxicology and carcinogenesis studies of quercetin in F344/N rats. NIH Publication No 91-3140. Research Triangle Park, NC: US Department of Health and Human Service.Google Scholar
  2. 2.
    Iishi H, Tatsuta M, Baba M, Hirasawa R, Sakai N, Yano H, Uehara H, Nakaizumi A (1999) Low-protein diet promotes sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats. Cancer Lett 141: 117–122.Google Scholar
  3. 3.
    Kim DJ, Park CB, Lee JS, Tsuda H, Furihata C (1999) Enhanced quinone reductase (QR) activity correlates with promotion potential of diethyl maleate (DEM) in rat forestomach and glandular stomach carcinogenesis initiated with N-methyl-N'-nitrosoguanidine (MNNG). Cancer Lett 137: 193–200.Google Scholar
  4. 4.
    Foltinova P, Lahitova N, Ebringer L (1994) Antimutagenicity in Euglena gracilis. Mutat Res 323: 167–171.Google Scholar
  5. 5.
    Vojtekova H, Miertus S (1986) Influence of ascorbic acid on the mutagenicity of N-methyl-N-nitrosoguanidine and nitrofurans studied by SOS chromotest. Neoplasma 33: 691–698.Google Scholar
  6. 6.
    Jain AK, Shimoi K, Nakamura Y, Kada T, Hara Y, Tomita I (1989) Crude tea extracts decrease the mutagenic activity of N-methyl-N'-nitro-N-nitrosoguanidine in vitro and in intragastric tract of rats. Mutat Res 210: 1–8.Google Scholar
  7. 7.
    Galloway SM, Painter RB (1979) Vitamin C is positive in the DNA synthesis inhibition and sister-chromatid exchange tests. Mutat Res 60: 321–327.Google Scholar
  8. 8.
    Shirai T, Masuda A, Fukushima S, Hosoda K, Ito N (1985) Effects of sodium L-ascorbate and related compounds on rat stomach carcinogenesis initiated by N-methyl-N'-nitro-N-nitrosoguanidine. Cancer Lett 29: 283–288.Google Scholar
  9. 9.
    Bjeldanes LF, Chang GW (1977) Mutagenic activity of quercetin and related compounds. Science 197: 577–578.Google Scholar
  10. 10.
    IARC (1983) Quercetin. In: Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Lyon, France: International Agency for Research on Cancer, pp 213–229.Google Scholar
  11. 11.
    Wiltrout RH, Hornung RL (1988) Natural products as antitumor agents: Direct versus indirect mechanisms of activity of flavonoids. J Natl Cancer Inst 80: 220–222.Google Scholar
  12. 12.
    Francis AR, Shetty TK, Bhattacharya RK (1989) Modulating effect of plant flavonoids on the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis 10: 1953–1955.Google Scholar
  13. 13.
    Singh NP, McKoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of damage in individual cells. Exp Cell Res 175: 184–191.Google Scholar
  14. 14.
    Singh NP (1997) Sodium ascorbate induces DNA single-strand breaks in human cells in vitro. Mutat Res 375: 195–203.Google Scholar
  15. 15.
    Klaude M, Eriksson S, Nygren J, Ahnstrom G (1996) The comet assay: Mechanisms and technical considerations. Mutat Res 363: 89–96.Google Scholar
  16. 16.
    McKelvey-Martin VJ, Green MHL, Schmetzer P, Pool-Zobel BL, De Meo MP, Collins AR (1993) The single cell gel electrophoresis assay (comet assay): A European review. Mutat Res 288: 47–63.Google Scholar
  17. 17.
    Collins AR, Dobson VL, Dusinska M, Kennedy G, Stetina R (1997) The comet assay: What can it really tell us? Mutat Res 375: 183–193.Google Scholar
  18. 18.
    Collins AR, Ma AG, Duthie SJ (1995) The kinetics of repair of oxidative damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336: 69–77.Google Scholar
  19. 19.
    Ashby JA, Tinwell H, Lefevre PA, Browne MA (1995) The single cell gel electrophoresis assay for induced DNA damage (comet assay): Measurement of tail length and moment. Mutagenesis 10: 85–90.Google Scholar
  20. 20.
    Olive PL, Banath JP (1995) Sizing highly fragmented DNA in individual apoptotic cells using the comet assay and a DNA crosslinking agent. Exp Cell Res 221: 19–26.Google Scholar
  21. 21.
    Imlay JA, Lin S (1988) DNA damage and oxygen radical toxicity. Science 240: 1302–1309.Google Scholar
  22. 22.
    Norkus EP, Kuenzig WA (1985) Studies on the antimutagenic activity of ascorbic acid in vitro and in vivo. Carcinogenesis 6: 1593–1598.Google Scholar
  23. 23.
    Guttenplan JB (1978) Mechanisms of inhibition by ascorbate of microbial mutagenesis induced by N-nitroso compounds. Cancer Res 38: 2018–2022.Google Scholar
  24. 24.
    Kuo SM, Leavitt PS, Lin CP (1998) Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol Trace Elem Res 62: 135–153.Google Scholar
  25. 25.
    Yamashita N, Tanemura H, Kawanishi S (1999) Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutat Res 425: 107–115.Google Scholar
  26. 26.
    Duthie SJ, Johnson W, Dobson VL (1997a) The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimidines) and growth in human cells. Mutat Res 390: 141–151.Google Scholar
  27. 27.
    Kruszewski M, Iwane?ko T, Bouzyk W, Szumiel I (1999) Chelating of iron and copper alters properties of DNA in L5178Y cells, as revealed by the comet assay. Mutat Res 434: 53–60.Google Scholar
  28. 28.
    Alvi NK, Rizvi RY, Hadi SM (1996) Interaction of quercetin with DNA. Biosci Rep 6: 861–868.Google Scholar
  29. 29.
    Cotelle N, Bernier J-L, Catteau J-P, Pommery J, Wallet J-C, Gaydou EM (1996) Antioxidant properties of hydroxyflavones. Free Radic Biol Med 20: 35–43.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Błasiak
    • 1
  • A. Trzeciak
    • 1
  • A. Gąsiorowska
    • 2
  • J. Drzewoski
    • 2
  • E. Małecka-Panas
    • 2
  1. 1.Department of Molecular GeneticsUniversity of LodzLodzPoland
  2. 2.Department of Digestive Tract Diseases and Metabolic DisturbancesMedical University of LodzLodzPoland

Personalised recommendations