Skip to main content
Log in

The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

In the two-dimensional case, the generalized Radon transform takes each function supported in a disk to the values of the integrals of that function over a family of curves. We assume that the curves differ only slightly from straight lines and the network formed by these curves has the same topological structure as the network of straight lines. Thus, the generalized Radon transform specifies a function on the set of straight lines. Under these conditions, we obtain a solution of the inversion problem for the generalized Radon transform and indicate a Cavalieri condition describing the range of this transform in the space of functions on the set of straight lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry and Related Questions in Representation Theory, Generalized Functions [in Russian], Issue 5, Fizmatgiz, Moscow, 1967.

    Google Scholar 

  2. I. M. Gelfand, S. G. Gindikin, and M. I. Graev, Selected Problems in Integral Geometry [in Russian], Dobrosvet, Moscow, 2000.

    Google Scholar 

  3. S. Helgason, The Radon Transform, Birkhäuser, Boston-Basel-Stuttgart, 1980.

    Google Scholar 

  4. S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press, Orlando etc., 1984.

    Google Scholar 

  5. I. M. Gelfand, M. I. Graev, and Z. Ya. Shapiro, “Differential forms and integral geometry,” Funkts. Anal. Prilozhen., 3, No. 2, 24–40 (1969).

    Google Scholar 

  6. V. Guillemin, “On some results of Gelfand in integral geometry,” In: Pseudodifferential operators and Applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., Vol. 43, Providence, R.I., 1985, pp. 149–155.

    Google Scholar 

  7. V. Guillemin and S. H. Sternberg, Geometric Asymptotics, Amer. Math. Soc., Providence, 1977.

    Google Scholar 

  8. E. T. Quinto, “The dependence of the generalized Radon transform on defining measures,” Trans. Amer. Math. Soc., 257, No. 2, 331–346 (1980).

    Google Scholar 

  9. A. Greenleaf and G. Uhlmann, “Nonlocal inversion formulas for the X-ray transformation,” Duke Math. J., 58, No. 1, 205–240 (1989).

    Google Scholar 

  10. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993.

    Google Scholar 

  11. D. H. Phong, “Regularity of Fourier integral operators,” In: Proc. Intern. Congress of Math., Zurich, 1994, Vol. 2, Birkhauser, Basel, 1995, pp. 862–874.

    Google Scholar 

  12. D. H. Phong and E. M. Stein, “Singular Radon transforms and oscillatory integrals,” Duke Math. J., 58, No. 2, 347–369 (1989).

    Google Scholar 

  13. E. T. Quinto, “Radon transforms on curves in the plane,” In: Tomography, Impedance Imaging, and Integral Geometry, Lectures in Appl. Math., Vol. 30, Amer. Math. Soc., Providence, R.I., 1994, pp. 231–244.

    Google Scholar 

  14. J. Boman and E. T. Quinto, “Support theorems for real-analytical Radon transforms,” Duke Math. J., 55, No. 4, 943–948 (1987).

    Google Scholar 

  15. M. L. Agranovsky and E. T. Quinto, “Injectivity sets for the Radon transform over circles and complete systems of radial functions,” J. Funct. Anal., 139, 383–414 (1996).

    Google Scholar 

  16. A. Greenleaf and G. Uhlmann, “Estimates for singular Radon transforms and pseudodifferential operators with singular symbols,” J. Funct. Anal., 89, 202–239 (1990).

    Google Scholar 

  17. A. A. Thomson, “Sobolev estimates for singular Radon transforms,” J. Funct. Anal., 112, 61–96 (1993).

    Google Scholar 

  18. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience Publishers, Inc., New York, 1955.

    Google Scholar 

  19. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II: Partial Differential Equations (Vol. II by R. Courant), Interscience Publishers, New York, 1962.

    Google Scholar 

  20. M. M. Lavrent'ev, V. G. Vasil'ev, and V. G. Romanov, Multidimensional Inverse Problems for Differential Equations [in Russian], Nauka, Novosibirsk, 1969.

    Google Scholar 

  21. V. G. Romanov, “Reconstructing functions from integrals over a family of curves,” Sib. Mat. Zh., 7, No. 5, 1206–1208 (1967).

    Google Scholar 

  22. A. M. Cormack, “Radon transform on a family of curves in the plane,” I, Proc. Amer. Math. Soc., 83, 325–330 (1981); II, ibid.,86, 293–298 (1982).

    Google Scholar 

  23. P. D. Lax and P. S. Phillips, “The Paley-Wiener theorem for the Radon transform,” Comm. Pure Appl. Math., 23, No. 3, 409–424 (1970).

    Google Scholar 

  24. R. G. Mukhometov, “On a problem in integral geometry,” In: Mathematical Problems of Geophysics [in Russian], No. 6, Novosibirsk, 1975, pp. 212–242.

  25. Yu. E. Anikinov, “On the solvability of a problem in integral geometry,” Mat. Sb., 101 (143), No. 2, 271–279 (1976).

    Google Scholar 

  26. R. G. Mukhometov, “The problem of reconstructing the two-dimensional Riemannian metric and integral geometry,” Dokl. Akad. Nauk SSSR, 232, No. 1, 32–35 (1977).

    Google Scholar 

  27. A. L. Bukhgeim, Introduction to the Theory of Inverse Problems [in Russian], Nauka, Novosibirsk, 1988.

    Google Scholar 

  28. R. B. Marr, “On the reconstruction of a function on a circular domain from a sampling of its line integrals,” J. Math. Anal. Appl., 45, 357–374 (1974).

    Google Scholar 

  29. P. K. Suetin, Orthogonal Polynomials [in Russian], Nauka, Moscow, 1979.

    Google Scholar 

  30. F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vols. 1, 2, Plenum Press, New York-London, 1980.

    Google Scholar 

  31. D. A. Popov, “Estimates with constants for a class of oscillating integrals,” Usp. Mat. Nauk, 52, No. 1, 77–148 (1997).

    Google Scholar 

  32. A. Erdélyi, Asymptotic Expansions, Dover, New York, 1956.

    Google Scholar 

  33. L. Hörmander, “The spectral function of elliptic operator,” Acta Math., 121, Nos. 3–4, 193–218 (1968).

    Google Scholar 

  34. R. S. Deans, The Radon Transform and Some Its Applications, John Wiley and Sons, New York, 1983.

    Google Scholar 

  35. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, Oxford-London-Edinburgh-New York-Paris, 1966.

  36. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomy, Tables of Integral Transforms, Vol. II, MacGraw-Hill, New York, 1954.

    Google Scholar 

  37. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series of Special Functions [in Russian], Nauka, Moscow, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, D.A. The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions. Functional Analysis and Its Applications 35, 270–283 (2001). https://doi.org/10.1023/A:1013126507543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013126507543

Keywords

Navigation