Skip to main content
Log in

Summer egg production rates of paracalanid copepods in subtropical waters adjacent to Australia's North West Cape

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The biological oceanography of waters adjacent to Australia's North West Cape (21° 49′ S, 114° 14′ E) was studied during the austral summers of 1997/98 and 1998/99. We measured egg production rate (EPR) by the small paracalanid copepods that dominated the calanoid community. Bottle incubation experiments were conducted at a shallow (∼20 m) station in the mouth of Exmouth Gulf, and at a shelf-break station (∼80 m). In 1997/98, we measured EPR by Paracalanus aculeatus, P. indicus, Acrocalanus gracilis and Bestiolina similis, but in 1998/99, we concentrated on P. indicus. Maximal observed EPRs by Paracalanus and Acrocalanus species were ∼ 30 eggs female−1 d−1, but B. similis attained only 17 eggs female−1 d−1. Sporadic measurements of EPR by P. aculeatus minor (maximum ∼ 4 eggs female−1 d−1) and Parvocalanus crassirostris (∼ 9 eggs female−1 d−1) were also made. However, maximal EPRs were seldom achieved and were often less than 10 eggs female−1 d−1. There was no difference between EPR of either P. indicus or B. similis in 1997/98 and 1998/99, despite differences in temperature. Trophic resources severely limit copepod egg production in this area. We suggest that variability and skewness of egg production data derived from individual incubations may be used to judge the degree of food limitation of the population and the variability in feeding success between individuals. The dominance of small copepods and the invariance in their EPR suggest that pulses in physical forcing and subsequent primary production will be severely damped by trophodynamic processes before reaching larval fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayukai, T. & D. Miller, 1998. Phytoplankton biomass, production and grazing mortality in Exmouth Gulf, a shallow embayment on the arid, tropical coast of Western Australia. J. exp. mar. Biol. Ecol. 225: 239–251.

    Google Scholar 

  • Bamstedt, U., 1988. Ecological significance of individual variability in copepod bioenergetics. Hydrobiologia 167/168: 43–59.

    Google Scholar 

  • Carlotti, F., C. Rey, A. Javanshir & S. Nival, 1997. Laboratory studies on egg and faecal pellet production of Centropages typicus: effect of age, effect of temperature, individual variability. J. Plankton. Res. 19: 1143–1165.

    Google Scholar 

  • Chisholm, L. A. & J. C. Roff, 1990. Abundances, growth rates and production of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 79–89.

    Google Scholar 

  • Dagg, M., 1977. Some effects of patchy food environments in copepods. Limnol. Oceanogr. 22: 99–107.

    Google Scholar 

  • Davis, C. S., 1987. Components of the zooplankton production cycle in the temperate ocean. J. mar. Res. 45: 947–983.

    Google Scholar 

  • Furnas, M. J. & A. W. Mitchell, 1986. Phytoplankton dynamics in the central Great Barrier Reef - I. Seasonal changes in biomass and community structure and their relation to intrusive activity. Cont. Shelf Res. 6: 363–384.

    Google Scholar 

  • Gó mez-Gutiérrez, J. & W. T. Peterson, 1999. Egg production rates of eight calanoid copepod species during summer 1997 off Newport, Oregon, U.S.A. J. Plankton Res. 21: 637–658.

    Google Scholar 

  • Hay, S., 1995. Egg production and secondary production of common North Sea copepods: field estimates with regional and seasonal comparisons. ICES J. mar. Sci. 52: 315–327.

    Google Scholar 

  • Holloway, P. E., S. E. Humphries, M. Atkinson & J. Imberger, 1985. Mechanisms for nitrogen supply to the Australian North West Shelf. Aust. J. mar. Freshwat. Res. 36: 753–764.

    Google Scholar 

  • Hopcroft, R. R. & J. C. Roff, 1998. Zooplankton growth rates: the influence of female size and resources on egg production of tropical marine copepods. Mar. Biol. 132: 79–86.

    Google Scholar 

  • Hopcroft, R. R., J. C. Roff & D. Lombard, 1998. Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar. Biol: 130 pp.

  • Huntley, M. & M. D. G. Lopez, 1992. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat. 140: 201–242.

    Google Scholar 

  • Ianora, A., 1990. The effect of reproductive condition on egg production rates in the planktonic copepod Centropages typicus. J. Plankton Res. 12: 885–890.

    Google Scholar 

  • Ianora, A. & I. Buttino, 1990. Seasonal cycles in population abundances and egg production rates in the planktonic copepods Centropages typicus and Acartia clausi. J. Plankton Res. 12: 473–481.

    Google Scholar 

  • Ianora, A., M. G. Mazzocchi & R. Grottoli, 1992. Seasonal fluctuations in fecundity and hatching success in the planktonic copepod Centropages typicus. J. Plankton Res. 14: 1483–1494.

    Google Scholar 

  • Ianora, A., B. Scotto Di Carlo & P. Mascellaro, 1989. Reproductive biology of the planktonic copepod Temora stylifera. Mar. Biol. 101: 187–194.

    Google Scholar 

  • Kimmerer, W. J., 1984. Spatial and temporal variability in egg production rates of the calanoid copepod Acrocalanus inermis. Mar. Biol 78: 165–169.

    Google Scholar 

  • Kimmerer, W. J. & A. D. McKinnon, 1989. Zooplankton in a marine bay. III. Evidence for influence of vertebrate predation on distributions of two common copepods. Mar. Ecol. Prog. Ser. 53: 21–35.

    Google Scholar 

  • Kiø rboe, T., F. Mohlenberg & H. U. Riisgard, 1985. In situ feeding rates of planktonic copepods: a comparison of four methods. J. exp. mar. Biol. Ecol. 88: 67–81.

    Google Scholar 

  • Kleppel, G. S., C. A. Burkart & L. Houchin, 1998. Nutrition and the regulation of egg production in the calanoid copepod Acartia tonsa. Limnol. Oceanogr. 43: 1000–1007.

    Google Scholar 

  • Kleppel, G. S., R. E. Pieper & G. Trager, 1988. Variability in the gut contents on individual Acartia tonsa from waters off Southern California. Mar. Biol. 97: 185–190.

    Google Scholar 

  • Laabir, M., S. A. Poulet & A. Ianora, 1995. Measuring production and viability of eggs in Calanus helgolandicus. J. Plankton Res. 17: 1125–1142.

    Google Scholar 

  • Lopez, M. D. G., M. E. Huntley & J. T. Lovette, 1993. Calanoides acutus in Gerlache Strait, Antarctica. I. Distribution of late copepodite stages and reproduction during spring. Mar. Ecol. Prog. Ser. 100: 153–165.

    Google Scholar 

  • Mauchline, J., 1998. The biology of calanoid copepods. Academic Press, San Diego.

    Google Scholar 

  • McKinnon, A. D., 1996. Growth and development in the subtropical copepod Acrocalanus gibber. Limnol. Oceanogr. 1438–1447.

  • McKinnon, A. D. & T. Ayukai, 1996. Copepod egg production and food resources in Exmouth Gulf, Western Australia. Mar. Freshwat. Res. 47: 595–603.

    Google Scholar 

  • McKinnon, A. D. & S. R. Thorrold, 1993. Zooplankton community structure and copepod egg production in coastal waters of the central Great Barrier Reef lagoon. J. Plankton Res. 15: 1387–1411.

    Google Scholar 

  • Montagnes, D. J. S., A. J. Poulton & T. M. Shammon, 1999. Mesoscale, finescale and microscale distribution of micro-and nanoplankton in the Irish Sea, with emphasis on ciliates and their prey. Mar. Biol. 134: 167–179.

    Google Scholar 

  • Niehoff, B., U. Klenke, H.-J. Hirche, X. Irigoien, R. Head & R. P. Harris, 1999. A high frequency time series at Weathership M, Norwegian Sea, during the 1997 spring bloom: the reproductive biology of Calanus finmarchicus. Mar. Ecol. Prog. Ser. 176: 81–92.

    Google Scholar 

  • Owen, R. W., 1989. Microscale and finescale variations of small plankton in coastal and pelagic environments. J. mar. Res. 47: 197–240.

    Google Scholar 

  • Peterson, W. T., P. Tiselius & T. Kiø rboe, 1991. Copepod egg production, moulting and growth rates, and secondary production, in the Skagerrak in August 1988. J. Plankton Res. 13: 131–154.

    Google Scholar 

  • Richardson, A. J. & H. M. Verheye, 1999. Growth rates of copepods in the southern Benguela upwelling system: the interplay between body size and food. Limnol. Oceanogr. 44: 382–392.

    Google Scholar 

  • Rodriguez, V. & E. G. Durbin, 1992. Evaluation of synchrony of feeding behaviour in individual Acartia hudsonica (Copepoda, Calanoida). Mar. Ecol. Prog. Ser. 87: 7–13.

    Google Scholar 

  • Rodríguez, V., F. Guerrero & B. Bautista, 1995. Egg production of individual copepods of Acartia grani Sars from coastal waters: seasonal and diel variability. J. Plankton Res. 17: 2233–2250.

    Google Scholar 

  • Runge, J. A., 1988. Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability. Hydrobiologia 167/168: 61–71.

    Google Scholar 

  • Runge, J. A. & J. C. Roff, 2000. The measurement of growth and reproductive rates. In Harris, R. P., P. H. Wiebe, J. Lenz, H. R. Skjoldal & M. Huntley (eds) ICES Zooplankton Methodology Manual. Academic Press, New York: 401–454.

    Google Scholar 

  • Saiz, E., A. Calbet, I. Trepat, X. Irigoien & M. Alcaraz, 1997. Food availability as a potential source of bias in the egg production method for copepods. J. Plankton Res. 19: 1–14.

    Google Scholar 

  • Strickland, J. D. H., 1965. Production of organic matter in the primary stages of the marine food chain. In J. P. Riley & G. Skirrow (eds), Chemical Oceanography Vol. 1. Academic Press, New York: 477–610.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Fisheries Res. Bd. Canada Bulletin 167. 2nd edn. Ottawa.

  • Tester, P. A. & J. T. Turner, 1990. How long does it take copepods to make eggs? J. exp. mar. Biol. Ecol. 141: 169–182.

    Google Scholar 

  • Tourangeau, S. & J. A. Runge, 1991. Reproduction of Calanus glacialis under ice in spring in Southeastern Hudson Bay, Canada. Mar. Biol. 108: 227–233.

    Google Scholar 

  • Tranter, D. J., 1962. Zooplankton abundance in Australasian waters. Aust. J. mar. Freshwat. Res. 13: 106–142.

    Google Scholar 

  • Uye, S. & N. Shibuno, 1992. Reproductive biology of the planktonic copepod Paracalanus sp. in the Inland Sea of Japan. J. Plankton Res. 14: 343–358.

    Google Scholar 

  • Uye, S., T. Yamaoka & T. Fujisawa, 1992. Are tidal fronts good recruitment areas for herbivorous copepods? Fish. Oceanogr. 1: 216–226.

    Google Scholar 

  • Webber, M. K. & J. C. Roff, 1995. Annual biomass and production of the oceanic copepod community off Discovery Bay, Jamaica. Mar. Biol. 123: 481–495.

    Google Scholar 

  • Williamson, C. E. & N. M. Butler, 1987. Temperature, food and mate limitation of copepod reproductive rates: separating the effects of multiple hypotheses. J. Plankton Res. 9: 821–836.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis. 2nd edn. Prentice-Hall, Inc., New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinnon, A.D., Duggan, S. Summer egg production rates of paracalanid copepods in subtropical waters adjacent to Australia's North West Cape. Hydrobiologia 453, 121–132 (2001). https://doi.org/10.1023/A:1013115900841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013115900841

Navigation