General Relativity and Gravitation

, Volume 33, Issue 11, pp 1929–1951 | Cite as

Induced Matter and Particle Motion in Non-Compact Kaluza-Klein Gravity

  • A. P. Billyard
  • W. N. Sajko
Article

Abstract

We examine generalizations of the five-dimensional canonical metric by including a dependence of the extra coordinate in the four-dimensional metric. We discuss a more appropriate way to interpret the four-dimensional energy-momentum tensor induced from the five-dimensional space-time and show it can lead to quite different physical situations depending on the interpretation chosen. Furthermore, we show that the assumption of five-dimensional null trajectories in Kaluza-Klein gravity can correspond to either four-dimensional massive or null trajectories when the path parameterization is chosen properly. Retaining the extra-coordinate dependence in the metric, we show the possibility of a cosmological variation in the rest masses of particles and a consequent departure from four-dimensional geodesic motion by a geometric force. In the examples given, we show that at late times it is possible for particles traveling along 5D null geodesics to be in a frame consistent with the induced matter scenario.

Kaluza-Klein induced matter cosmological constant geodesics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Overduin, J., and Wesson, P. S. (1997). Phys. Rep. 283, 303.Google Scholar
  2. 2.
    Sajko, W. N., Wesson, P. S., and Liu, H. (1998). J. Math. Phys. 39, 2193.Google Scholar
  3. 3.
    Rippl, S., Romero, C., and Tavakol, R. (1995). Class. Quantum Grav. 12, 2411.Google Scholar
  4. 4.
    Romero, C., Tavakol, R., and Zalaletdinov, R. (1996). Gen. Rel. Grav. 28, 365.Google Scholar
  5. 5.
    Billyard, A. P., and Wesson, P. S. (1996). Gen. Rel. Grav. 28, 129.Google Scholar
  6. 6.
    Billyard, A. P., and Wesson, P. S. (1996). Phys. Rev. D 53, 731.Google Scholar
  7. 7.
    Mashhoon, B., Liu, H., and Wesson, P. S. (1994). Phys. Lett. B 331, 305.Google Scholar
  8. 8.
    Billyard, A. P., and Coley, A. A. (1997). Mod. Phys. Lett. A 12, 2121.Google Scholar
  9. 9.
    Wesson, P. S., Ponce de Leon, Liu, H., Masshoon, B., Kalligas, D., Everitt, C. W. F., Billyard, A., Lim, P., and Overduin, J. (1996). Int. J. Mod. Phys. A 11, 3247.Google Scholar
  10. 10.
    Wesson, P. S. (1999). Space, Time, Matter: Modern Kaluza-Klein Theory. (World Scientific, River Edge, New Jersey).Google Scholar
  11. 11.
    Wesson, P. S. (1984). Gen. Rel. Grav. 16, 193.Google Scholar
  12. 12.
    Mashhoon, B., Wesson, P. S., and Liu, H. (1998). Gen. Rel. Grav. 30, 555.Google Scholar
  13. 13.
    Ponce de Leon, J. (1988). Gen. Rel. Grav. 20, 539.Google Scholar
  14. 14.
    Lopez, J. L., and Nanopoulos, D. V. (1996). Mod. Phys. Lett. A 11, 1.Google Scholar
  15. 15.
    Endo, M., and Fukui, T. (1977). Gen. Rel. Grav. 8, 833.Google Scholar
  16. 16.
    Overduin, J., and Cooperstock, F. I. (1998). Phys. Rev. D 58, 043506.Google Scholar
  17. 17.
    Wesson, P. S. (1992). Astrophys. J. 394, 19.Google Scholar
  18. 18.
    Sajko, W. N. (1999). Phys. Rev. D 60, 104038.Google Scholar
  19. 19.
    Wesson, P. S., and Liu, H. (1998). Phys. Lett. B 432, 266.Google Scholar
  20. 20.
    Hall, G. S. (1984). Arab. J. Sci. Eng. 9, 87.Google Scholar
  21. 21.
    Wesson, P. S., Mashhoon, B., and Liu, H. (1997). Mod. Phys. Lett. A 12, 2309.Google Scholar
  22. 22.
    Chaboyer, B. (1998). Phys. Rept. 307, 23.Google Scholar
  23. 23.
    Chaboyer, B., Demarque, P., Kernan, P. J., and Krauss, L. M. (1998). Astrophys. J. 494, 96.Google Scholar
  24. 24.
    Bekenstein, J. D. (1977). Phys. Rev. D 15, 1458.Google Scholar
  25. 25.
    Sajko, W. N. (2000). Int. J. Mod. Phys. D 9, 445.Google Scholar
  26. 26.
    Reinhard, R., Jafry, Y., and Laurance, R. (1993). Euro. Space Agency Jour. 17, 251.Google Scholar
  27. 27.
    Billyard, A. P., and Coley, A. A. (1997). Mod. Phys. Lett. A 12, 2223.Google Scholar
  28. 28.
    Wald, R. M. (1984). General Relativity. (The University of Chicago Press, Chicago, Illinois).Google Scholar
  29. 29.
    Kramer, D., Stephani, H., Herlt, E., and MacCallum, M. A. H. (1980). Exact Solutions of Einstein' Field Equations. (Cambridge University Press, Cambridge).Google Scholar
  30. 30.
    Hall, G. S. (1993). Symmetries in General Relativity. Monograph series, Centro Brasileiro de Pesquisas F´icas. CBPF-MO-001 /93.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • A. P. Billyard
    • 1
  • W. N. Sajko
    • 2
  1. 1.Department of PhysicsQueen's UniversityKingstonCanada
  2. 2.Department of PhysicsUniversity of WaterlooWaterlooCanada

Personalised recommendations