Skip to main content
Log in

Broken Weyl Invariance and the Origin of Mass

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A massless Weyl-invariant dynamics of a scalar, a Dirac spinor, and electromagnetic fields is formulated in a Weyl space, W4, allowing for conformal rescalings of the metric and of all fields with nontrivial Weyl weight together with the associated transformations of the Weyl vector fields κμ, representing the D(1) gauge fields, with D(1) denoting the dilatation group. To study the appearance of nonzero masses in the theory the Weyl symmetry is broken explicitly and the corresponding reduction of the Weyl space W4 to a pseudo-Riemannian space V4 is investigated assuming the breaking to be determined by an expression involving the curvature scalar R of the W4 and the mass of the scalar, selfinteracting field. Thereby also the spinor field acquires a mass proportional to the modulus Φ of the scalar field in a Higgs-type mechanism formulated here in a Weyl-geometric setting with Φ providing a potential for the Weyl vector fields κμ. After the Weyl-symmetry breaking, one obtains generally covariant and U(1) gauge covariant field equations coupled to the metric of the underlying V4. This metric is determined by Einstein's equations, with a gravitational coupling constant depending on Φ, coupled to the energy momentum tensors of the now massive fields involved together with the (massless) radiation fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Weyl, Gravitation und Elektrizität (Sitzungsber. Preuss. Akad. Wiss., 1918), pp. 465–480; Ann. Phys. (Leipzig ) 59, 101-133 (1919).

    Google Scholar 

  2. H. Weyl, Raum-Zeit-Materie, 7th ed. (Springer, Heidelberg, 1988). Compare also Z. Phys. 56, 330–352 (1929).

    Google Scholar 

  3. T. Fulton, F. Rohrlich, and L. Witten, Rev. Mod. Phys. 34, 442–457 (1962).

    Google Scholar 

  4. H. Tann, Einbettung der Quantentheorie eines Skalarfeldes in eine Weyl-Geometrie—Weyl-Symmetrie und ihre Brechung, Dissertation (Fakultät fü r Physik der Ludwig-Maximilians-Universität München, München, Apr. 1997) (published by Herbert Utz Verlag, München, 1998; ISBN: 3-89675-318-5).

  5. C. G. Callan, S. Coleman, and R. Rackiw, Ann. Phys. (N.Y.) 59, 42–73 (1970).

    Google Scholar 

  6. A. Trautman, personal communication. See also M. Cahen, S. Gutt, and A. Trautman, J. Geom. Phys. 10, 127–154 (1993)

    Google Scholar 

  7. R. Penrose, Proc. Roy. Soc. (London ) 284, 159–203 (1965).

    Google Scholar 

  8. W. Pauli, Herv. Phys. Acta. 13, 204–208 (1940).

    Google Scholar 

  9. E. Schrödinger, Diracsches Elektron in Schwerefeld I (Sitzungsber. Preuss. Akad. Wiss.,1932), pp. 105–128.

  10. F. Rohrlich, Classical Charged Particles (Addison-Wesley, Redwood City, 1965).

    Google Scholar 

  11. S. Helgason, The Radon Transform (Birkhäuser, Basel, 1980), p. 144.

    Google Scholar 

  12. W. Drechsler, Mass-Generation by Weyl-Symmetry Breaking, MPI-PhT/98-68.

  13. W. Drechsler, Math. Phys. 38, 5531–5558 (1997).

    Google Scholar 

  14. W. Drechsler and D. Hartley, J. Math. Phys. 35, 3571–3586 (1994).

    Google Scholar 

  15. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1 (Interscience, Wiley, New York, 1963), pp. 57 and 88.

    Google Scholar 

  16. E. Cartan, Ann. Ec. Norm. Sup. 39, 325–412 (1922);41, 1-25 (1924); 42, 17-88 (1925).

    Google Scholar 

  17. R. Bach, Math. Z. 9, 110–135 (1921).

    Google Scholar 

  18. S. S. Chern, Ann. Math. 45, 747–752 (1944); Ann. Math. 46, 674-684 (1945).

    Google Scholar 

  19. W. Drechsler, GRG 15, 703–723 (1983).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drechsler, W., Tann, H. Broken Weyl Invariance and the Origin of Mass. Foundations of Physics 29, 1023–1064 (1999). https://doi.org/10.1023/A:1012851715278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012851715278

Keywords

Navigation