Lithuanian Mathematical Journal

, Volume 41, Issue 3, pp 239–251 | Cite as

Generalized z-Distributions and Related Stochastic Processes

  • B. Grigelionis
Article

Abstract

The class of generalized z–distributions is defined and their properties are investigated. Ornstein–Uhlenbeck–type and self–similar generalized z–processes are constructed and described. Esscher transforms of the generalized z–processes and the mixed generalized z–processes are characterized. Finally, construction and some properties of generalized z–diffusions are also discussed.

$z$–distributions Meixner distributions Ornstein–Uhlenbeck–type process Esscher transform mixed exponential process self–decomposability self–similarity ergodic diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. F. Andrews and C. L. Mallows, Scale mixtures of normal distributions, J. Roy. Statist. Soc. Ser. B, 36, 99–102 (1974).Google Scholar
  2. 2.
    S. K. Bar-Lev, D. Bshouty, and G. Letac, Natural exponential families and self-decomposability, Statist. Probab. Lett., 13, 147–152 (1992).Google Scholar
  3. 3.
    O. E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. London Ser. A, 353, 401–419 (1977).Google Scholar
  4. 4.
    O. E. Barndorff-Nielsen, Hyperbolic distributions and distributions on hyperbolae, Scand. J. Statist., 5, 151–157 (1978).Google Scholar
  5. 5.
    O. E. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24, 1–14 (1997).Google Scholar
  6. 6.
    O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance and Stochastics, 2, 41–68 (1998).Google Scholar
  7. 7.
    O. E. Barndorff-Nielsen, J. Kent, and M. Sørensen, Normal variance-mean mixtures and z distributions, Internat. Statist. Rev., 50, 145–159 (1982).Google Scholar
  8. 8.
    B. M. Bibby and M. Sørensen, A hyperbolic diffusion model for stock prices, Finance and Stochastics, 1, 25–41 (1997).Google Scholar
  9. 9.
    L. Bondesson, Generalized gamma convolutions and related classes of distributions and densities, Lecture Notes in Statist., 73, Springer (1992).Google Scholar
  10. 10.
    M. Borkovec and C, Klöppelberg, Extremal behaviour of diffusion models in finance, Extremes, 1(1), 47–80 (1998).Google Scholar
  11. 11.
    T. Chan, Pricing contingent claims on stocks driven by Lévy processes, Ann. Appl. Probab., 9(2), 504–528 (1999).Google Scholar
  12. 12.
    E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli, 1, 281–299 (1995).Google Scholar
  13. 13.
    R. A. Fisher, On a distribution yielding the error function of several well-known statistics, in: Proc. Int. Math. Congress, II, Toronto (1924), pp. 805–813.Google Scholar
  14. 14.
    M. Fisz, Infinitely divisible distributions: recent results and applications, Ann. Math. Statist., 33(1), 68–84 (1962).Google Scholar
  15. 15.
    H. U. Gerber and E. S. W. Shiu, Option pricing by Esscher transforms (with discussion), Trans. Soc. Actuaries, 46, 99–191 (1994).Google Scholar
  16. 16.
    I. S. Gradshteyn and I. W. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York (1965).Google Scholar
  17. 17.
    B. Grigelionis, On mixed exponential processes and martingales, Lith. Math. J., 38(1), 46–58 (1998).Google Scholar
  18. 18.
    B. Grigelionis, Processes of Meixner type, Lith. Math. J., 39(1), 33–41 (1999).Google Scholar
  19. 19.
    E. Janke, F. Emde, und F. Lösch, Tafeln Höherer Funktionen, Teubner, Stuttgart (1960).Google Scholar
  20. 20.
    I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York (1998).Google Scholar
  21. 21.
    M. Kessler and M. Sørensen, Estimating equations based on eigenfunctions for a discretely observed diffusion process, Bernoulli, 5(2), 299–314 (1999).Google Scholar
  22. 22.
    E. Lukacs, Characteristic functions, 2nd edn., Charles Griffin, London (1970).Google Scholar
  23. 23.
    D. B. Madan and E. Seneta, The Variance Gamma (V.G.) model for share market returns, J. Business, 63, 511–524 (1990).Google Scholar
  24. 24.
    D. B. Madan and F. Milne, Option pricing with V.G. martingale components, Math. Finance, 1(4), 39–55 (1991).Google Scholar
  25. 25.
    J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugende Funktion, J. London Math. Soc., 9, 6–13 (1934).Google Scholar
  26. 26.
    J. W. Pitman et M. Yor, Quelques identités en loi pour les processus de Bessel, Hommage é Meyer-Neveu, Asteérisque, 236, 249–276 (1996).Google Scholar
  27. 27.
    R. L. Prentice, Discrimination among some parametric models, Biometrika, 62, 607–614 (1975).Google Scholar
  28. 28.
    T. H. Rydberg, Generalized hyperbolic diffusions with applications in finance, Math. Finance, 9(2), 183–201 (1999).Google Scholar
  29. 29.
    K. Sato, Self-similar processes with independent increments, Probab. Theory Related Fields, 89, 285–300 (1991).Google Scholar
  30. 30.
    W. Schoutens and J. L. Teugels, Leévy processes, polynomials and martingales, Comm. Statist. Stochastic Models, 14(1, 2), 335–349 (1998).Google Scholar
  31. 31.
    M. Sharpe, Zeros of infinitely divisible densities, Ann. Math. Statist., 40, 1503–1505 (1969). ?Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • B. Grigelionis
    • 1
  1. 1.Institute of Mathematics and Informatics, Akademijos 4;Vilnius UniversityVilniusLithuania

Personalised recommendations