Skip to main content
Log in

Redox remobilization and the heavy metal record in lake sediments: a modelling approach

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The issue of whether heavy metal concentration profiles in lake sediments are vulnerable to redox mediated post-burial alteration stubbornly refuses to go away. Such behaviour is well-known in iron and manganese, due to great contrasts in the solubility of the reduced and oxidized chemical forms. A numbers of trace elements that also exhibit more than one oxidation state in lake sediments have also been shown to undergo diffusive migration in response to redox gradients (e.g., As, Co, Cr, V). What remains unclear is whether elements like Cd, Cu, Pb and Zn, that have only one stable oxidation state in sediments, are also subject to alteration. This paper reviews existing evidence and presents a model, based on current knowledge, to constrain the likely effects. It is concluded that some migration is likely, but that this is only significant at extremely low sediment mass accumulation rates. The formulation of the model highlights the need for further information about the physical form of iron and manganese oxyhydroxides in lake sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achterberg, E. P., C. M. G. van den Berg, M. Boussemart & W. Davison, 1997. Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deepwater anoxia. Geochem. Cosmochem. Acta 61: 5233-5253.

    Google Scholar 

  • Appleby, P. G., F. Oldfield, R. Thompson & P. Huttunen, 1979. 210Pb dating of annually laminated lake sediments from Finland. Nature 280: 53-54.

    Google Scholar 

  • Aston, S. R., D. Bruty, R. Chester & R. C. Padgham, 1973. Mercury in lake sediments: a possible indicator of technological growth. Nature 241: 450-451.

    PubMed  Google Scholar 

  • Balistrieri, L. S., J. W. Murray & B. Paul, 1992. The biogeochemical cycling of trace metals in the water column of Lake Sammamish, WA: response to seasonally anoxic conditions. Limnol. Oceanogr. 37: 529-548.

    Google Scholar 

  • Belzile, N., R. R. de Vitre & A. Tessier, 1989. In situ collection of diagenetic iron and manganese oxyhydroxides from natural sediments. Nature 340: 376-377.

    Google Scholar 

  • Benoit, G., 1995. Evidence of the particle concentration effect for lead and other metals in fresh waters based on ultraclean techniques. Geochem. Cosmochem. Acta 59: 2677-2687.

    Google Scholar 

  • Benoit, G. & T. F. Rozan, 1999. The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochem. Cosmochem Acta 63: 113-117.

    Google Scholar 

  • Berner, R. A., 1980. In Early diagenesis: a theoretical approach. Princeton University Press, Princeton, 241 pp.

    Google Scholar 

  • Boudreau, B. P, 1999. Metals and models: diagenetic modelling in freshwater lacustrine sediments. J. Paleolim. 22: 227-251.

    Google Scholar 

  • Boyle, J. F., 2001. Inorganic geochemical methods in palaeolimnology. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change using Lake Sediments: Physical and Geochemical Methods. Kluwer, in press.

  • Boyle, J. F. & H. J. B. Birks, 1999. Predicting heavy metal concentrations in the surface sediments of Norwegian headwater lakes from atmospheric deposition: an application of a simple sediment-water partitioning model. Wat. Air Soil Pollut. 114: 27-51.

    Google Scholar 

  • Boyle, J. F., A. W. Mackay, N. L. Rose, R. J. Flower & P. G. Appleby, 1998. Sediment heavy metal record in Lake Baikal: natural and anthropogenic sources. J. Paleolim. 20: 135-150.

    Google Scholar 

  • Christensen, E. R. & R. J. Klein, 1991. 'Unmixing' of the 137Cs, Pb, Zn, and Cd records in lake sediments. Env. Sci. Technol. 25: 1627-1637.

    Google Scholar 

  • Cornwell, J. C., 1986. Diagenetic trace-metal profiles in Arctic lake sediments. Environ. Sci. Technol. 20: 299-303.

    Google Scholar 

  • Crusius, J. & R. F. Anderson, 1995. Evaluating the mobility of 137Cs, 239+240Pu and 210Pb from their distributions in laminated lake sediments. J. Paleolimn. 13: 119-141.

    Google Scholar 

  • Davis, J. A. & D. B. Kent, 1990. Surface complexation modeling in aqueous geochemistry. In Hochella, M. F. & A. F. White (eds), Mineral-Water Interface Geochemistry. Reviews in Mineralogy 23: 177-260.

  • Davison, W., 1993. Iron and manganese in lakes. Earth-Sci. Rev. 34: 119-163.

    Google Scholar 

  • Dzombak, D. A. & F. M. M. Morel, 1990. In Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley.

  • Flower, R. J., A. W. Mackay, N. L. Rose, J. F. Boyle, J. A. Dearing, P. G. Appleby, A. E. Kuzmina & L. Z. Granina, 1995. Sedimentary records of recent environmental change in Lake Baikal, Siberia. The Holocene 5: 323-327.

    Google Scholar 

  • Förstner, U. & G. T. Wittman, 1976. In Metal Pollution in the Aquatic Environment. Springer, New York, 486 pp.

    Google Scholar 

  • Fortin, D., G. G. Leppard & A. Tessier, 1993. Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochem. Cosmochem. Acta 57: 4391-4404.

    Google Scholar 

  • Gubala, C. P., D. R. Engstrom & J. R. White, 1990. Effects of iron cycling on 210Pb dating of sediments in an Adirondack lake, USA. Can. J. Fish. Aquat. Sci. 47: 1821-1829.

    Google Scholar 

  • Hamilton-Taylor, J. & W. Davison, 1995. Redox-driven cycling of trace elements in lakes. In Lerman, A., D. Imboden & J. Gat (eds), Physics and Chemistry of Lakes. Springer-Verlag, Berlin, 334 pp.

    Google Scholar 

  • Hamilton-Taylor, J., L. Gusti, W. Davison, W. Tych & C. N. Hewitt, 1995. Sorption of trace metals (Cu, Pb, Zn) by suspended lake particles in artificial (0.005 M NaNO3) and natural (Esthwaite Water) freshwaters. Colliods and surfaces A: Physicochemical and engineering aspects 120: 205-219.

    Google Scholar 

  • Huerta-Diaz, M. A., A. Tessier & R. Carignan, 1998. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl. Geochem. 13: 213-233.

    Google Scholar 

  • Li, Y.-H., 1981. Ultimate removal mechanisms of elements from the ocean. Geochem. Cosmochem. Acta 45: 1659-1664.

    Google Scholar 

  • Lofts, S. & E. Tipping, 1998. An assemblage model for cation binding by natural particulate matter. Geochem. Cosmochem. Acta 62: 2609-2625.

    Google Scholar 

  • Lorenzen, J., R. N. Glud & N. P. Revsbech, 1995. Impact of microsensor-caused changes in diffusive boundary layer thickness on O2 profiles and photosynthetic rates in benthic communities of microorganisms. Mar. Ecol. Prog. Ser. 119: 237-241.

    Google Scholar 

  • Morfett, K., W. Davison & J. Hamilton-Taylor, 1988. Trace metal dynamics in a seasonally anoxic lake. Environ. Geol. Water Sci. 11: 107-114.

    Google Scholar 

  • Sakata, M., 1985. Diagenetic remobilisation of manganese, iron, copper and lead in anoxic sediment of a fresh-water pond. Wat. Res. 19: 1033-1038.

    Google Scholar 

  • Tessier, A., R. Carignan, B. Dubreuil & F. Rapin, 1989. Partitioning of zinc between the water column and the oxic sediments in lakes. Geochem. Cosmochem. Acta 53: 1511-1522.

    Google Scholar 

  • Tessier, A., Y. Couillard, P. G. C. Campbell & J. C. Auclair, 1993. Modeling Cd partitioning in oxic lake sediments and Cd concentrations in the freshwater bivalve Anodonta grandis. Limnol. Oceanogr. 38: 1-17.

    Google Scholar 

  • Tessier, A., D. Fortin, N. Belzile, R. R. de Vitre & G. G. Leppard, 1996. Metal sorption to iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochem. Cosmochem. Acta 60: 387-404.

    Google Scholar 

  • Thomas, R. L., 1972. The distribution of mercury in the sediments of Lake Ontario. Can. J. Earth Sci. 9: 636-651.

    Google Scholar 

  • Tipping, E., 1981. The adsorption of aquatic humic substances by iron oxides. Geochem. Cosmochem. Acta 45: 191-199.

    Google Scholar 

  • Wersin, P., P. Höhener, R. Giovanoli & W. Stumm, 1991. Early diagenetic influences on iron transformations in a freshwater lake sediment. Chem. Geol. 90: 233-252.

    Google Scholar 

  • Williams, T. M., 1992. Diagenetic metal profiles in recent sediments of a Scottish freshwater loch. Environ. Geol. Wat. Sci. 20: 117-123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, J. Redox remobilization and the heavy metal record in lake sediments: a modelling approach. Journal of Paleolimnology 26, 423–431 (2001). https://doi.org/10.1023/A:1012785525239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012785525239

Navigation