Skip to main content
Log in

Grain-Boundary Segregation of Phosphorus in Low-Alloy Steel

  • Published:
Atomic Energy Aims and scope

Abstract

Grain-boundary segregation of impurity elements, such as phosphorus, arsenic, antimony, and others, decreases the grain-boundary cohesion, which can substantially increase the temperature of the ductile-brittle transition in low-alloy structural steel. The most dangerous surface-active impurity for low-alloy steel employed for nuclear reactor vessels is phosphorus. A change of the cohesive strength of grain boundaries as a result of radiation-stimulated phosphorus segregation is considered to be one of the main mechanisms determining the radiation embrittlement of reactor-vessel materials. Since the mechanisms of embrittlement during development of reversible temper brittleness and radiation-stimulated grain-boundary segregation of phosphorus are the same, the main characteristics of the influence of the latter on the mechanical properties of steel can be determined by investigating steel treated in the range 400–600°C. The present investigation made it possible to develop a relation for determining the change in the temperature of the ductile-brittle transition in low-alloy steel as a result of the development of temper brittleness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. V. Nikolaeva, Yu. A. Nikolaev, and A. M. Kryukov, “Grain boundary embrittlement due to reactor pressure vessel annealing,” J. Nucl. Materials, 211, 236-243 (1994).

    Article  Google Scholar 

  2. Yu. A. Nikolaev and A. V. Nikolaeva, “Embrittlement of low-alloyed steels dur to impurity segregation at intergranular boundaries,” Materials Sci. Forum, 207-209, 653-6656 (1996).

    Google Scholar 

  3. Yu. A. Nikolaev, A. V. Nikolaeva, O. O. Zabusov, et al., “Radiation and heat induced adsorption of phosphorus on grain boundaries in low-alloy steel,” Fiz. Met. Materialloved., 81, 120-128 (1996).

    Google Scholar 

  4. L. M. Utevskii, E. É. Glikman, and G. S. Kark, Reversible Temper Brittleness of Steel and Iron Alloys [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  5. P. L. Gruzin and V. V. Mural', “Mechanism of the effect of molybdenum on reversible temper brittleness of steel,” Metalloved. Termoobrab. Metal., No. 3, 70-72 (1969).

    Google Scholar 

  6. P. L. Gruzin and V. V. Mural', “Effect of doping on phosphorus diffusion in ferrite,” Fiz. Met. Materialloved., 17, 384-389 (1964).

    Google Scholar 

  7. O. A. Kaibushev and R. Z. Valiev, Grain Boundaries and the Properties of Metals [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  8. V. Vitek, D. Smith, and R. Pond, “Structure of boundaries in b.c.c. metals,” Phil. Mag. A, 41, No. 5, 649-663 (1980).

    Google Scholar 

  9. M. Hashimoto, Y. Ishida, R. Yamamoto, and M. Doyama, “Atomic studies of grain boundary segregation in Fe-P and Fe-B alloy,” Acta Met., 32, No. 1, 1-11 (1984).

    Article  Google Scholar 

  10. M. Hashimoto, Y. Ishida, R. Yamamoto, et al., “Transformation of the grain boundary structure in iron by phosphorus segregation,” Scripta Metallurgica, 16, No. 3, 267-270 (1982).

    Article  Google Scholar 

  11. M. K. Miller, R. Jayaram, and K. F. Russell, “Characterization of phosphorus segregation in neutron-irradiated Russian pressure vessel steel weld,” J. Nucl. Mater., 225, 215-224 (1995).

    Article  Google Scholar 

  12. D. MacLean, Grain Boundaries in Metals [Russian translation], Metallurgizdat, Moscow (1960).

    Google Scholar 

  13. P. Bischker and R. Wild, “A microstructural study of phosphorus segregation and intergranular fracture in neutron irradiated submerged-arc welds,” in: Effects of Radiation on the Materials. ASTM STP 1270 (1996), pp. 260-273.

  14. I. Langmuir, J. Amer. Chem. Soc., 40, 136 (1918).

    Google Scholar 

  15. B. S. Bokshtein and L. S. Shvindlerman, “Effect of internal adsorption in solids,” Preprint IFTT AN SSSR, Chernogolovka (1978).

  16. E. Hondros and M. Sesh, “Segregation to interfaces,” Intern. Met. Rev., No. 12, 261-303 (1977).

  17. M. Seah and E. Hondros, “Grain boundary segregation,” Proc. Roy. Soc. Lond., 503A, No. 1601, 191-212 (1973).

    Google Scholar 

  18. R. Fowler and E. Guggenheim, Statistical Thermodynamics, Interscience Publishers, Cambridge (1960).

    Google Scholar 

  19. A. Ucisik, C. McMahon, and H. Feng, “The influence of intercritical heat treatment on the temper embrittlement of rotor steels,” Met. Trans., 9A, No. 3, 321-329 (1978).

    Google Scholar 

  20. G. Spink, “Reversible temper embrittlement of rotor steels,” ibid., 8A, No. 1, 135-143 (1977).

    Google Scholar 

  21. M. Guttmann, “The role of residuals and alloying elements in temper embrittlement,” Phil. Trans. Roy. Soc. Lond. A, 295, 169-196 (1980).

    Google Scholar 

  22. M. Seah, “Grain boundary segregation and the T-t dependence of temper brittleness,” Acta Met., 25, No. 3, 345-357 (1977).

    Article  Google Scholar 

  23. G. S. Kark, “Effect of phosphorus concentration in perlite steel on grain-boundary impurity maximum of internal friction,” Trudy TSNIITmasha, No. 178, 23-34 (1983).

    Google Scholar 

  24. M. Guttmann, “The link between equilibrium segregation and precipitation in ternary solutions exhibiting temper embrittlement,” Metal Sci., No. 10, 337-341 (1976).

    Google Scholar 

  25. A. V. Nikolaeva, Yu. A. Nikolaev, and A. M. Kryukov, “The contribution of grain boundary effects to low-alloy steel irradiation embrittlement,” J. Nucl. Mater., 218, 85-93 (1994).

    Article  Google Scholar 

  26. Standards for Calculating the Strength of Equipment and Pipes in Nuclear Power Plants PNAÉ G-7-002-86 [in Russian], Énergoatomizdat, Moscow (1989).

  27. G. S. Kark and A. A. Astaf'ev, “Temper brittleness of low-alloy Cr-Ni-Mo steels,” Trudy TSNIITmasha, No. 177, 43-66 (1983).

    Google Scholar 

  28. A. V. Nikolaeva, Yu. A. Nikolaev, D. M. Shur, and A. A. Chernobaeva, “Prediction of the tendency of Cr-Ni-Mo steel to temper brittleness,” Fiz. Met. Materialoved., 76, 163-170 (1993).

    Google Scholar 

  29. A. V. Nikolaeva, Yu. A. Nikolaev, and A. M. Kryukov, “Estimation of grain boundary embrittlement due to reactor pressure vessel annealing,” Preprint NSI-3-93, Nuclear Safety Institute, Moscow, Russia (1993).

    Google Scholar 

  30. S. Takayama, T. Ogura, Shin-Cheng Fu, and C. McMahon, “The calculation of transition temperature changes in steels due to temper embrittlement,” Met. Trans., 11A, No. 9, 1513-1530 (1980).

    Google Scholar 

  31. A. Polit, R. D'Anna, and J. Buzzichelli, “Effect of austenite grain size and thermal history on low-temperature of Ni-Cr-Mo-V rotor steel,” Met. Sci., 15, No. 6, 278-280 (1981).

    Google Scholar 

  32. N. P. Mel'nikov, L. I. Gladshein, L. G. Gavrilenko, et al., “Steel with carbonitride hardening of electroslag remelt for large pressure vessels,” Stal', No. 12, 65-69 (1985).

    Google Scholar 

  33. C. McMahon, D. Gentner, and A. Ucisik, “Investigation of effect of grain size and hardness on the threshold of cold-brittleness of steel 2.25 Cr-1Mo, subjected to temper embrittlement,” Teor. Osnovy, 106, No. 1, 66-70 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaeva, A.V., Nikolaev, Y.A. & Kevorkyan, Y.R. Grain-Boundary Segregation of Phosphorus in Low-Alloy Steel. Atomic Energy 91, 534–542 (2001). https://doi.org/10.1023/A:1012482419952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012482419952

Keywords

Navigation