Advertisement

Ukrainian Mathematical Journal

, Volume 53, Issue 3, pp 354–367 | Cite as

Exterior Tensor Product of Perverse Sheaves

  • V. V. Lyubashenko
Article

Abstract

Under certain assumptions, we prove that the Deligne tensor product of the categories of constructible perverse sheaves on pseudomanifolds X and Y is the category of constructible perverse sheaves on X×Y. The functor of the exterior Deligne tensor product is identified with the exterior geometric tensor product.

Keywords

Tensor Product Perverse Sheave Geometric Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Haefliger, “Introduction to piecewise linear intersection homology,” Intersection Cohomology. Progr. Math. No. 50, 1–21 (1984).Google Scholar
  2. 2.
    A. Borel, “Sheaf theoretic intersection cohomology,” Intersection Cohomology. Progr. Math. No. 50, 47–182 (1984).Google Scholar
  3. 3.
    A. A. Beilinson, J. Bernstein, and P. Deligne, “Faisceaux pervers,” Astérisque 100 (1982).Google Scholar
  4. 4.
    P. Deligne, “Catégories tannakiennes,” in: The Grothendieck Festschrift. Progr. Math. No. 87, 111–195 (1991).Google Scholar
  5. 5.
    A. A. Beilinson, V. Ginzburg, and W. Soergel, “Koszul duality patterns in representation theory,” J. Amer. Math. Soc. 9, No. 2, 473–527 (1996).Google Scholar
  6. 6.
    N. Yoneda, “On the homology theory of modules,” J. Fac. Sci. Univ. Tokyo, Sec. I. 7, 193–227 (1954).Google Scholar
  7. 7.
    H. Cartan and S. Eilenberg, Homological Algebra Princeton University Press, Princeton (1956).Google Scholar
  8. 8.
    N. Yoneda, “Note on products in Ext,” Proc. Amer. Math. Soc. 9, No. 6, 873–875 (1958).Google Scholar
  9. 9.
    J.-L. Verdier, “Dualité dans la cohomologie des espaces localement compacts,” in: Sém. Bourbaki. Exp. 300 (1965/66), pp. 1–13.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • V. V. Lyubashenko
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev

Personalised recommendations