Journal of Sol-Gel Science and Technology

, Volume 22, Issue 3, pp 225–236 | Cite as

Induced Absorption of C60 and a Water-Soluble C60-Derivative in SiO2 Sol-Gel Matrices

  • J. Schell
  • D. Felder
  • J.-F. Nierengarten
  • J.-L. Rehspringer
  • R. Lévy
  • B. Hönerlage


Porous sol-gel glasses, either impregnated with pure C60 or doped with a methanofullerene derivative, have been studied and induced absorption or “reverse saturable absorption” (RSA) has been observed in both types of solid materials. The samples impregnated by pure C60 mainly contain well-dispersed fullerene molecules. Unlike crystalline films of C60, their absorption dynamics can be well described by a 5-level model, developed for non-interacting C60-molecules in solutions. Methanofullerene samples, on the other hand, show signs of micellar aggregation and therefore RSA dynamics that are influenced by solid state effects. We observe an important decrease of transmission at high fluences for both kinds of samples, a shortened singlet-state lifetime to that observed in solution, but nonetheless, a triplet yield, that cannot be considered as negligible. In the case of pure C60 in a sol-gel matrix, we can explain the faster de-excitation dynamics, relative to behavior in solution, mainly by the absence of stabilizing aromatic solvents and also by the interaction of the amorphous environment with the molecules. Concerning the methanofullerene samples, the acceleration of the de-excitation dynamics can be principally attributed to solid-state effects due to the micellar aggregation.

optical limiting induced absorption reverse saturable absorption fullerenes fullerene derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bourdon and S. Paolacci-Riera, Optique et Photonique 4, 22 (1998).Google Scholar
  2. 2.
    L.W. Tutt and A. Kost, Nature 356, 225 (1992).Google Scholar
  3. 3.
    J.W. Perry, K. Mansour, I.-Y. S. Lee, X.-L. Wu, P.V. Bedworth, C.-T. Chen, D. Ng, S.R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, Science 273, 1533 (1996).Google Scholar
  4. 4.
    D. Vincent and J. Cruickshank, Applied Optics 36(30), 7794 (1997).Google Scholar
  5. 5.
    K.M. Nashold and D. Powell Walter, J. Opt. Soc. Am. B 12(7), 1228 (1995).Google Scholar
  6. 6.
    M.P. Joshi, R. Mishra, H.S. Rawat, C. Mehendale, and K.C. Rustagi, Appl. Phys. Lett. 62(15), 1763 (1993).Google Scholar
  7. 7.
    D.G. McLean, R.L. Sutherland, M.C. Brant, D.M. Brandelik, P.A. Fleitz, and T. Pottenger, Optics Letters 18, 858 (1993).Google Scholar
  8. 8.
    F. Henari, J. Callaghan, H. Stiel, W. Blau, and D.J. Cardin, Chemical Physics Letters 199, 144 (1992).Google Scholar
  9. 9.
    B.L. Justus, Z.H. Kafafi, and A.L. Huston, Optics Letters 18, 1603 (1993).Google Scholar
  10. 10.
    S.R. Mishra, H.S. Rawat, M.P. Joshi, and S.C. Mehendale, Appl. Phys. A 63, 223 (1996).Google Scholar
  11. 11.
    Y. Sun, Q. Gong, S.-C. Yang, Y.H. Zou, L. Fei, and X. Zhou, Optics Communications 102, 205 (1993).Google Scholar
  12. 12.
    V.V. Golovlev, W.R. Garret, and C.H. Chen, J. Opt. Soc. Am. B 13, 2801 (1996).Google Scholar
  13. 13.
    A. Kost, L. Tutt, M.B. Klein, T.K. Dougherty, and W.E. Elias, Optics Letters 18, 334 (1993).Google Scholar
  14. 14.
    A. Kost, J. Jensen, M.B. Klein, J.C. Withers, R.O. Loutfy, M.B. Haeri, M.E. Ehritz, and T. Yadav, Proc. SPIE 2284, 208 (1994).Google Scholar
  15. 15.
    C. Li, L. Zhang, R. Wang, Y. Song, and Y. Wang, J. Opt. Soc. Am. B 11, 1356 (1994).Google Scholar
  16. 16.
    V. Klimov, L. Smilowitz, H. Wang, M. Grigorova, J.M. Robinson, A. Koskelo, B.R. Mattes, F. Wudl, and D.W. McBranch, Res. Chem. Intermed. 23(7), 587 (1997).Google Scholar
  17. 17.
    R.A. Cheville and N.J. Halas, Phys. Rev. B 45(8), 4548 (1992).Google Scholar
  18. 18.
    V.M. Farztdinov, Y.E. Lozovik, Y.A. Matveets, A.G. Stepanov, and Y.S. Letokhov, J. Phys. Chem. 98, 3290 (1994).Google Scholar
  19. 19.
    S.R. Flom, J. Bartoli, H.W. Sarkas, C.D. Merrit, and Z.H. Kafafi, Phys. Rev. B 51(17), 11376 (1994).Google Scholar
  20. 20.
    L. Smilowitz, D. McBranch, V. Klimov, J.M. Robinson, M. Grigorova, B.J. Weyer, A. Koskelo, B.R. Mattes, H. Wang, and F. Wudl, Synthetic Metals 84, 931 (1997).Google Scholar
  21. 21.
    S. Couris, E. Koudoumas, A.A. Ruth, and S. Leach, J. Phys. B: At. Mol. Opt. Phys. 28, 4537 (1995).Google Scholar
  22. 22.
    J. Barroso, A. Costela, I. Garcia-Moreno, and J.L. Salz, J. Phys. Chem A 102, 2527 (1998).Google Scholar
  23. 23.
    M. Lee, O. Song, J. Seo, D. Kim, Y.D. Suh, S.M. Jin, and S.K. Kim, Chem. Phys. Letters 196(3), 4325 (1992).Google Scholar
  24. 24.
    S. Leach, M. Vervloet, A. Despres, E. Breheret, J.P. Hare, T.J. Dennis, H.W. Kroto, R. Taylor, and D.R.M. Walton, Chemical Physics 160, 451 (1992).Google Scholar
  25. 25.
    J.W. Arbogast, A.P. Darmanyan, C.S. Foote, Y. Rubin, F.N. Diederich, M.M. Alvarez, S.J. Anz, and R.L. Whetten, J. Phys. Chem. 95, 11 (1991).Google Scholar
  26. 26.
    T.W. Ebbesen, K. Tanigaki, and S. Karoshima, Chem. Phys. Letters 181(6), 501 (1992).Google Scholar
  27. 27.
    J. Schell, D. Brinkmann, D. Ohlmann, B. Hönerlage, R. Lévy, M. Joucla, J.L. Rehspringer, J. Serughetti, and C. Bovier, J. Chem. Phys. 108, 8599 (1998).Google Scholar
  28. 28.
    D. Felder, D. Guillon, R. Lévy, A. Mathis, J.-F. Nicoud, J.-F. Nierengarten, J.-L. Rehspringer, and J. Schell, J. Mater. Chem. 10, 887 (2000).Google Scholar
  29. 29.
    O. Cintora-Gonzalez, C. Estournès, J.-L. Guille, J.-J. Grob, B. Hönerlage, J. Lemoigne, R. Lévy, T. Lutz, J.-C. Merle, D. Muller, M. Richard, J.-L. Rehspringer, J. Schell, and N. Viart, Analusis 28, 109 (2000).Google Scholar
  30. 30.
    R. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, J. Phys. Chem. 98, 3492 (1994).Google Scholar
  31. 31.
    J. Eastoe, E.R. Crooks, A. Beeby, and R.K. Heenan, Chemical Physics Letters 245, 571 (1995).Google Scholar
  32. 32.
    U. Jonas, F. Cardullo, P. Belik, F. Diederich, A. Gügel, E. Harth, A. Herrmann, L. Isaacs, K. Müllen, H. Ringsdorf, C. Thielgen, P. Uhlmann, A. Vasella, C.A.A. Waldraff, and M. Walter, Chem. Eur. J. 1, 243 (1995).Google Scholar
  33. 33.
    J. Catalán, New Journal of Chemistry 19, 1233 (1995).Google Scholar
  34. 34.
    C. Bingel, Chem. Ber. 126, 1957 (1993).Google Scholar
  35. 35.
    J.-F. Nierengarten, V. Gramlich, F. Cardullo, and F. Diederich, Angew. Chem. Int. Ed. Engl. 35, 2101 (1996).Google Scholar
  36. 36.
    X. Camps and A. Hirsch, J. Chem. Soc., Perkin Trans. 1, 1595 (1997).Google Scholar
  37. 37.
    J.-F. Nierengarten and J.-F. Nicoud, Tetrahedron Lett. 38, 7737 (1997).Google Scholar
  38. 38.
    V.D. Felder and J.-F. Nierengartin, private communication. Selected spectroscopic data for 1: dark red solid (mp > 250°C); UV/Vis (in aqueous 0.1 M NaOH): see Figure 1; UV/Vis (CH2Cl2): λ max (ε)=257 (95000), 324 (27500), 425 (3200), 488 (2200), 685 (130); 1H-NMR (CDCl3, 200 MHz): 1.35–1.73 (m, 40 H), 2.17 (t, J = 6 Hz, 8 H), 3.87 (t, J = 6 Hz, 8 H), 5.41 (s, 4 H), 6.39 (t, J = 2 Hz, 2 H), 6.58 (d, J = 2 Hz, 4 H); FAB-MS: 1635.7 (10%, [M + H]+, calcd for C109H71O16: 1635.5), 720.2 (100%, [C60]+, calcd for C60: 720.0).Google Scholar
  39. 39.
    D.M. Guldi, H. Hungerbühler, and K.-D. Asmus, J. Phys. Chem. 99, 13487 (1995).Google Scholar
  40. 40.
    D.M. Guldi, J. Phys. Chem. A 101, 3895 (1997).Google Scholar
  41. 41.
    D.M. Guldi, H. Hungerbühler, and K.-D. Asmus, J. Phys. Chem. A 101, 1783 (1997).Google Scholar
  42. 42.
    J. Schell, D. Ohlmann, D. Brinkmann, R. Lévy, M. Joucla, J.L. Rehspringer, and B. Hönerlage, J. of Chem. Phys. 111, 5929 (1999).Google Scholar
  43. 43.
    B. Hönerlage, J. Schell, and R. Lévy, Nonlinear Optics 21, 189 (1999).Google Scholar
  44. 44.
    J.E. Riggs and Y.P. Sun, J. Phys. Chem. A 103, 485 (1999).Google Scholar
  45. 45.
    L. Smilowitz, D. McBranch, V. Klimov, J.M. Robinson, A. Koskelo, M. Grigorova, B.R. Mattes, H.Wang, and F. Wudl, Optics Letters 21, 922 (1996).Google Scholar
  46. 46.
    Y. Song, G. Fang, Y. Wang, S. Liu, C. Li, L. Song, Y. Zhu, and Q. Hu, Physics Letters 74, 332 (1999).Google Scholar
  47. 47.
    M. Meneghetti, M. Zerbetto, R. Signorini, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, E. Menegazzo, and M. Guglielmi, Synthetic Metals 86, 2353 (1997).Google Scholar
  48. 48.
    R.J. Sension, C.M. Philips, A.Z. Szarka, W.J. Romanow, A.R. McGhie, J.P. McCauley, A.B. Smith, and R.M. Hochstrasser, J. Phys. Chem. 95, 6075 (1991).Google Scholar
  49. 49.
    L. Yang, R. Dorsinville, and R. Alfano, Chemical Physics Letters 226, 605 (1994).Google Scholar
  50. 50.
    S.H. Gallagher, R.S. Armstrong, P.A. Lay, and C.A. Reed, J. Phys. Chem. 99, 5817 (1995).Google Scholar
  51. 51.
    B. Ma, C.E. Bunker, R. Guduru, X.-F. Zhang, and Y.-P. Sun, J. Phys. Chem. A, 101, 5626 (1997).Google Scholar
  52. 52.
    N. Armaroli, F. Diederich, C.O. Dietrich-Buchecker, L. Flamigni, G. Marconi, J.-F. Nierengarten, and J.-P. Sauvage, Chem. Eur. J. 4, 406 (1998).Google Scholar
  53. 53.
    N. Armaroli, F. Diederich, L. Echegoyen, T. Habicher, L. Flamigni, G. Marconi, and J.-F. Nierengarten, New Journal of Chemistry 23, 77 (1999).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. Schell
    • 1
  • D. Felder
    • 2
  • J.-F. Nierengarten
    • 2
  • J.-L. Rehspringer
    • 3
  • R. Lévy
    • 1
  • B. Hönerlage
    • 1
  1. 1.IPCMS-GONLOStrasbourgFrance
  2. 2.IPCMS-GMOStrasbourgFrance
  3. 3.IPCMS-GMIStrasbourgFrance

Personalised recommendations